CALCULUS III — EXAM I

September 26, 2006

Ron Umble, Instr. Millersville University

Name _____

Instructions: Write answers in the space provided. Show work for partial credit. Calculators may be used. Each problem is worth 5 points.

Problems 1-8 refer to the vectors $\mathbf{a} = \langle -2, \sqrt{3}, 3 \rangle$, $\mathbf{b} = \langle 1, -1, 2 \rangle$ and $\mathbf{c} = \langle 3, 0, -4 \rangle$.

1. Evaluate or simplify the following:

a. 5b-3c =

b. $\|\mathbf{a}\| =$

2. Find:

- a. The cosine of the angle θ between **a** and **c**.
- b. The angle θ between **b** and the positive z-axis (measured in degrees).
- 3. Find a non-zero vector \mathbf{w} orthogonal to \mathbf{b} .

 $\mathbf{w} =$

Problems 1-8 refer to the vectors $\mathbf{a} = \langle -2, \sqrt{3}, 3 \rangle$, $\mathbf{b} = \langle 1, -1, 2 \rangle$ and $\mathbf{c} = \langle 3, 0, -4 \rangle$.

5. Find the projection of \mathbf{b} on \mathbf{c} .

 $proj_{c}b =$

6. Find the area A of the parallelogram determined by \mathbf{b} and \mathbf{c} .

A =

7. Find the volume V of the parallelopiped determined by \mathbf{a} , \mathbf{b} and \mathbf{c} .

V =

8. Find *parametric equations* for the line passing through the point P(1, 2, 5) and parallel to **b**.

x =

- y =
- z =
- 9. The xyz-coordinates of P are (4,3,5); the xyz-coordinates of Q are (1,7,-5). Find the x, y and z components of the position vector \overrightarrow{PQ} .

10. Find the equation of the plane containing the points P(2,1,1), Q(3,-2,5), and R(4,5,-2).

11. Find the distance d from the point P(2,1,5) and the plane 5x - 3y + 7z = 10.

d =

12. By eliminating the parameter, find the xy-equation of the graph of the parametric equations $x = t^2 - \frac{1}{2}t^3$, $y = \frac{t}{2}$, $-2 \le t \le 3$. Sketch the graph, indicating the (x, y)-cordinates of the endpoints and the direction of increasing parameter t.

				-		_		_	-	_		_	_	_	_	_		_	
									4										
					-		-			-			-		-		-		
	_	_	-	_	-	_	-	_		-	-	_	-	_	-	_	-		-
H		-	-	-	-	-	-	-			-	-	-	-	-	-	-		-
	_	_	-	_	-	_	-	_		-	-	_	-	_	-	_	-	_	-
-																			
•																			►
•																			
•																			•
•																			•
•																		_	•
•																			•
•																			•
•																			•
•																			
•																			
																			•

13. Two lines are given parametrically by

x	=	4	—	3t	;	x	=	-2	+	3s
y	=	1	+	2t	;	y	=	-1	+	s
z	=	3	+	4t	;	z	=	$\overline{7}$	_	2s

Determine whether or not the lines intersect. If they do, find the (x, y, z)-coordinates of their point of intersection.

14. A force of 80 lbs. is applied to a wagon handle at an angle of 45° . Find the *work* W done after pulling the wagon 300 ft.

W =

15. A basketball player releases a jump shot 8 feet above the floor at a 45° angle with initial speed of 22 ft/sec and sinks the shot. The rim is 10 feet above the floor. Find the *horizontal distance x* from the point of the shot to the rim.

x =

Problems 16-20 refer to the position function $\mathbf{r}(t) = \langle 4 \sin t, t, 4 \cos t \rangle$.

- 16. Find the position, velocity, speed and acceleration when t = 0.
 - a. $\mathbf{r}(0) =$
 - b. $\mathbf{v}(0) =$
 - c. speed(0) =
 - d = n(0) = -

Problems 16-20 refer to the position function $\mathbf{r}(t) = \langle 4 \sin t, t, 4 \cos t \rangle$.

17. Find the arc length s of the curve traced out by **r** as t varies from 0 to 2π .

s =

18. Find the curvature κ when t = 0.

 $\kappa =$

19. Find the unit tangent vector \mathbf{T} and the principal unit normal vector \mathbf{N} when t = 0.

a. T(0) =

b. N(0) =

20. Find the tangential and normal components of acceleration $a_{\mathbf{T}}$ and $a_{\mathbf{N}}$ when t = 0.