CALCULUS III — EXAM I

February 14, 2006

Ron Umble, Instr.	
Millersville University	Name
Ţ.	

Instructions: Write answers in the space provided. Show work for partial credit. Calculators may be used. Each problem is worth 5 points.

 $\textbf{Problems 1-9 refer to the vectors} \ \ \mathbf{a} = \langle -2, 1, 2 \rangle \,, \ \ \mathbf{b} = \langle 1, -4, 3 \rangle \ \ \mathrm{and} \ \ \mathbf{c} = \langle -4, 0, 3 \rangle \,.$

1. Simplify: $2\mathbf{c} - 3\mathbf{a} =$

2. Find the unit vector \mathbf{u} in the direction opposite from \mathbf{c} .

 $\mathbf{u} =$

3. Compute: $\mathbf{b} \bullet \mathbf{c} =$

4. Find the component of a on c.

 $\operatorname{comp}_{\mathbf{c}} \mathbf{a} =$

5. Compute: $\|\mathbf{a}\| =$

Problems 1-9 refer to the vectors $\mathbf{a} = \langle -2, 1, 2 \rangle$, $\mathbf{b} = \langle 1, -4, 3 \rangle$ and $\mathbf{c} = \langle -4, 0, 3 \rangle$.

6. Find the cosine of the angle θ between **b** and **c**.

 $\cos \theta =$

7. Find the volume V of the parallelopiped determined by \mathbf{a} , \mathbf{b} and \mathbf{c} .

V =

8. Find parametric equations for the line passing through the point P(3,1,2) and parallel to **b**.

x =

y =

z =

9. Find two vectors \mathbf{w} parallel to \mathbf{c} with norm 6.

 $\mathbf{w} =$

10. Find the area A of parallelogram PQRS where $P\left(1,2,3\right),\ Q\left(2,-2,6\right),\ R\left(4,-1,4\right)$ and $S\left(3,3,1\right).$

A =

11. Find the equation of the plane containing parallelogram PQRS where $P\left(1,2,3\right)$, $Q\left(2,-2,6\right)$, $R\left(4,-1,4\right)$ and $S\left(3,3,1\right)$.

12. Two intersecting lines are given parametrically by

$$x = 1 + 2t$$
; $x = 1 + s$
 $y = 4 - 3t$; $y = 4 + 3s$
 $z = 3 + 4t$; $z = 3 - 2s$

Find the *equation* of the plane containing them.

13. The two planes x+y-z=5 and 3x-2y+z=7 intersect along a line ℓ . Find parametric equations of the line ℓ .

$$x =$$

$$y =$$

$$z =$$

14. Find the distance d from the point (3,2,4) to the plane given by 3x - y + z = 5.

$$d =$$

15. A force of 40 lbs. is applied to a wagon handle at an angle of 30°. Find the work W done after pulling the wagon 100 ft.

W =

16. An archer standing on a vertical cliff spots a buck resting on the ground 60 feet below. Taking aim with an angle of depression of -30° (below the horizontal), the arrow is released with an initial speed of 224 ft./sec. and kills the buck. What is the distance x from the base of the cliff to the buck?

x =

Problems 17-20 refer to the position function $\mathbf{r}(t) = \langle t^2, t^3 \rangle$

17. Find the position, velocity, speed and acceleration when t = 1.

a.
$$\mathbf{r}(1) =$$

b.
$$\mathbf{v}(1) =$$

c.
$$speed(1) =$$

$$d. \mathbf{a}(1) =$$

Problems 17-20 refer to the position function $\mathbf{r}\left(t\right)=\langle t^2,t^3\rangle$

18. Find the arc length s of the curve traced out by \mathbf{r} as t varies from 0 to 1.

s =

19. Find the curvature κ when t = 1.

 $\kappa =$

20. Find the tangential and normal components of acceleration $a_{\mathbf{T}}$ and $a_{\mathbf{N}}$ when t=1.

a.
$$a_{\mathbf{T}}(1) =$$

b.
$$a_{\mathbf{N}}(1) =$$