CALCULUS III — EXAM II

March 24, 2006

Ron Umble, Instructor Millersville University

Instructions: Write answers and supporting calculations in the space provided. Show work for partial credit. Each answer is worth 5 points.

1. Match each equation in the right-hand column with the name of the surface it defines given in the left-hand column. (Each answer is worth 1 point.)

a. Cone
$$2x^2 - 3y^2 - 6z = 0$$
 b. Cylinder
$$2x^2 + 3y^2 - 6z = 0$$
 c. Ellipsoid

d. Hyperbolic paraboloid
e. Hyperboloid of one sheet
$$2x^2 - 3y^2 - 6z^2 = 6$$

f. Hyperboloid of two sheets g. Paraboloid
$$2x^2 + 3y^2 - 6z^2 = 6$$

h. Sphere
$$2x^2 + 3y^2 + 6z^2 = 6$$

2. Is the function

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

continuous or discontinuous at (0,0)? Explain.

3. Show that $\lim_{(x,y)\to(0,0)} \frac{x^3y}{x^4+y^4}$ does not exist.

4. Given the fact that the following limit exists, evaluate:

$$\lim_{(x,y)\to(0,0)} \frac{\sin(x+y)}{x+y} =$$

- 5. The vertical plane y=2 is parallel to the xz-coordinate plane and intersects the graph of $z=2xy^2$ along some curve C. Find the <u>slope</u> of the line tangent to C at the point (1,1,2).
- 6. Evaluate the gradient of the function $f(x,y) = 3x^2 12xy + 2y^3$ at the point (1,-1).

- 7. Find $\frac{\partial z}{\partial v}$, if z = xy, $x(u, v) = v + \cos u$ and $y(u, v) = u + \sin v$. $\frac{\partial z}{\partial v} = v + \sin v$.
- 8. The equation $yz^2 + x^3z = 0$ implicitly defines z as a function of x and y. Find $\frac{\partial z}{\partial x} =$
- 9. Find the equation of the plane tangent to the graph of $g(x,y) = 3x^2 12xy$ at (1,0,3).

10. Find the linear (or tangent) approximation for $f(x,y) = \sqrt{4x + 2y}$ at the point (3,2) and use it to estimate f(3.1,1.9).

11. Find the rate of change of $f(x,y) = x^2 - y^2$ at the point P(-1,3) in the direction of $\langle 4, -3 \rangle$.

12. Find a <u>non-zero vector</u> in the direction of the maximum rate of change of g(x,y) = xy at the point P(1,-2).

13. Find the maximum rate of change of g(x,y) = xy at the point P(1,-2).

14. Find parametric equations for the line normal to the graph of $z = x^2 - y^2$ at the point (3, 2, 5).

15. Assume y is implicitly defined as a function of x by the equation $xy^2 + x^2y = \sin x$. Use methods of Calculus 3 to find $\frac{dy}{dx}$.

$$\frac{dy}{dx} =$$

16. Think of the surface defined by $x^2 + 3y^2 - 2z^2 = 4$ as the level surface S of height 4 for the function $g(x, y, z) = x^2 + 3y^2 - 2z^2$. Find the equation of the tangent plane to S at the point (3, 1, 2).

- 17. Find all critical points of $h(x,y) = 3x x^3 + y^2x 2y^2$.
- 18. The critical points for $f(x,y) = 3x^2 12xy + 2y^3$ are (0,0) and (4,8). If any, find all saddle points on the graph of f and/or local extreme values of f.

19. Use <u>Lagrange multipliers</u> to find the absolute extrema of $h(x,y) = x^2 + y^2$ along the line 2x + 6y = 20.

20. Evaluate: $\int_{0}^{3} \int_{0}^{\sqrt{y}} 6xy \ dx \ dy$