CALCULUS III — EXAM III

April 19, 2006

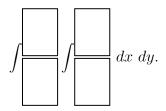
Ron Umble, Instr. Millersville University

Name _____

Instructions: Write answers and supporting calculations in the space provided. Unless specified otherwise, each problem is worth 5 points.

1. Consider a thin rectangular metallic plate $R = [0, 1] \times [0, 2]$ with density $\rho(x, y) = 2y$. Compute the moment M_x about the x-axis.

2. Reverse the order of integration:
$$\int_{0}^{4} \int_{-\sqrt{4-x}}^{\sqrt{4-x}} dy \, dx$$
. DO NOT EVALUATE.



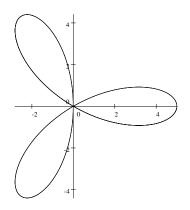
3. Set up a double integral to compute the *area* of the region R bounded by the curves $y = x^3 - x$ and $y = x - x^3$. <u>DO NOT EVALUATE</u>.

4. Set up a double integral to compute the *volume* of the solid bounded by the graphs of $y = 0, y = 9 - x^2, z = 0$ and $z = 9 - x^2$. <u>DO NOT EVALUATE</u>.

5. Transform to polar coordinates: $\int_{0}^{\sqrt{2}} \int_{x}^{\sqrt{4-x^2}} \sqrt{x^2 + y^2} \, dy \, dx$

DO NOT EVALUATE.

6. Set up a double integral in polar coordinates whose value is the *area* enclosed by one petal of the three-leaf rose $r = 5 \cos 3\theta$. <u>DO NOT EVALUATE</u>.



7. Set up a double integral in cylindrical coordinates to compute the *surface area* of the paraboloid $z = 25 - x^2 - y^2$ with $z \ge 0$ (above the *xy*-plane). <u>DO NOT EVALUATE</u>.

8. Let Q be the region of space under the graph of $z = x^2 + 2y + 4$ and above the rectangle $[0, 1] \times [0, 3]$ in the xy-plane. Evaluate $\iiint_Q dz dy dx$.

9. Let Q be the solid in the first octant bounded the coordinates planes, the plane z = 5 and the cone $z = \sqrt{x^2 + y^2}$. The density of Q is $\rho(x, y, z) = 2xy$. Set up a triple integral in *cylindrical coordinates* to compute the mass of Q. <u>DO NOT EVALUATE</u>.

10. Let Q be the region of space inside the hemisphere $z = \sqrt{4 - x^2 - y^2}$, outside the hemisphere $z = \sqrt{1 - x^2 - y^2}$ and inside the cone $z = \sqrt{x^2 + y^2}$. Set up a triple integral in *spherical coordinates* to evaluate $\iiint_Q x^2 + y^2 + z^2 \, dV$. <u>DO NOT EVALUATE</u>.

11. Find rectangluar and cylindrical coordinates of the point $\left(2, \frac{\pi}{6}, \frac{2\pi}{3}\right)$ in spherical coordinates.

<i>r</i> =	$\theta =$	<i>z</i> =
<i>x</i> =	<i>y</i> =	<i>z</i> =

12. Let $\mathbf{F}(x, y) = \langle -y, x \rangle$. Find equations in x and y for the flow lines of \mathbf{F} .

13. Let C be the curve parametrized by $x = t^2, y = t^3$ with $x \in [0, 2]$. Evaluate

$$\int_C y \, dx + x \, dy.$$

14. Compute the work done as a force $\mathbf{F}(x, y) = \langle y, x \rangle$ moves a particle along the line segment from (0,0) to (3,4) parametrized by x = 3t and y = 4t with $0 \le t \le 1$.

15. Determine whether or not the vector field $\mathbf{F}(x, y) = \langle y \sin xy + 1, x \sin xy - 1 \rangle$ is conservative.

16. Given that the vector field $\mathbf{F}(x,y) = \langle 2x + 2y^2, 3y^2 + 4xy \rangle$ is conservative, find a *potential function* for \mathbf{F} .

17. Given that the vector field $\langle y, x \rangle$ is conservative, use the Fundamental Theorem of Line Integrals to evaluate:

$$\int_{(1,0)}^{(2,1)} ydx + xdy$$

18. Let C be the circle $x^2 + y^2 = 9$ with positive orientation. Use *Green's Theorem* to evaluate $\oint_C (x - y) dx + (x + y) dy$.

19. Let R be region enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$. Use *Green's Theorem* to express $\iint_R dA$ as a line integral. Evaluate the line integral and obtain a formula for the area of R.

20. Let $\mathbf{F}(x, y, z) = \langle xz, xy, yz \rangle$.

- (a) $\mathbf{Curl}(\mathbf{F}) =$
- (b) $div(\mathbf{F}) =$