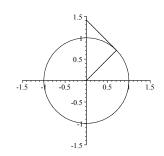
MATH 261 – CALCULUS III

THE UNIT NORMAL FOR PLANE CURVES

Given a smooth position function $\mathbf{r}(t) = \langle x(t), y(t) \rangle$, the unit normal $\mathbf{N}(t)$ can be obtained directly from the unit tangent $\mathbf{T}(t)$ by rotating $\mathbf{T} 90^{\circ}$ to the <u>concave side</u> of the curve taced out by \mathbf{r} .

Example 1: When the unit cricle is traced out with counterclockwise orientation, the unit normal is obtained by rotating the unit tangent counterclockwise 90° .

 $\begin{aligned} \mathbf{r}\left(t\right) &= \langle \cos t, \sin t \rangle \\ \mathbf{T}\left(t\right) &= \mathbf{v}\left(t\right) = \langle -\sin t, \cos t \rangle \\ \mathbf{N}\left(t\right) &= \mathbf{T}'\left(t\right) = \langle -\cos t, -\sin t \rangle \end{aligned}$



Example 2: When the unit cricle is traced out with clockwise orientation, the unit normal is obtained by rotating the unit tangent clockwise 90° .

 $\begin{aligned} \mathbf{r}\left(t\right) &= \langle \cos t, -\sin t \rangle \\ \mathbf{T}\left(t\right) &= \mathbf{v}\left(t\right) = \langle -\sin t, -\cos t \rangle \\ \mathbf{N}\left(t\right) &= \mathbf{T}'\left(t\right) = \langle -\cos t, \sin t \rangle \end{aligned}$

