
Chapter 4

Symmetry

A “symmetry” of a plane figure is an isometry that fixes If is an equi-
lateral triangle with centroid , for example, there are six symmetries of one
of which is the rotation 120 In this chapter we observe that the set of sym-
metries of a given plane figure is a “group” under composition. The structure
of these groups, called symmetry groups, encodes information pertaining to the
“symmetry types” of plane figures. But unfortunately, geometrical information
is often lost in the group structure. For example, a butterfly has line symmetry
but no point symmetry whereas a yin-yang symbol has point symmetry but no
line symmetry. Yet their symmetry groups, which contain very di erent symme-
tries, are isomorphic since both groups are cyclic of order two. Thus symmetry
groups are an imperfect invariant, i.e., we cannot recover all symmetries of a
plane figure from the structure of its symmetry group. Nevertheless, we can be
sure that two plane figures with non-isomorphic symmetry groups have di erent
symmetry types. Equivalently, two plane figures with the same symmetry type
have isomorphic symmetry groups.

The Classification Theorem of Plane Isometries (Theorem 125) assures us
that symmetries are always reflections, translations, rotations or glide reflec-
tions. Consequently, we can systematically identify all symmetries of a given
plane figure. Now if we restrict our attention to those plane figures with “fi-
nitely generated” symmetry groups, there are exactly five classes of symmetry
types: (1) asymmetrical patterns, (2) patterns with only bilateral symmetry,
(3) rosettes, (4) frieze patterns and (5) wallpaper patterns. Quite surprisingly,
there are exactly seven symmetry types of frieze patterns and seventeen symme-
try types of wallpaper patterns. Although there are infinitely many symmetry
types of rosettes, their symmetry is simple and easy to understand. Further-
more, it is interesting to note that two rosettes with di erent symmetries have
non-isomorphic symmetry groups. So for rosettes, the symmetry group is a
perfect invariant. We begin our discussion with what little group theory we
need.
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4.1 Groups of Isometries
In this section we introduce the group of isometries I and some of its subgroups.

Definition 127 A non-empty set equipped with a binary operation is a
group if and only if the following properties are satisfied:

1. Closure: If then

2. Associativity: If then ( ) = ( )

3. Identity: For all there exists an element such that =
=

4. Inverses: For each there exists such that = =

A group is abelian (or commutative) if and only if for all =

Theorem 128 The set I of all isometries is a group under function composi-
tion.

Proof. The work has already been done. Closure was proved in Exercise
1.1.3; the fact that composition of isometries is associative is a special case of
Exercise 1.1.4; the fact that acts as an identity element in I was proved in
Exercise 1.1.5; and the existence of inverses was proved in Exercise 1.1.7.

Since two halfturns with distinct centers of rotation do not commute and
halfturns are elements of I, the group I is non-abelian. On the other hand,
some subsets of I (the translations for example) contain commuting elements.
When such a subset is a group in its own right, it is abelian.

Definition 129 Let ( ) be a group and let be a non-empty subset of .
Then is a subgroup of if and only if ( ) is a group, i.e., is a group
under the operation inherited from

Given a non-empty subset of a group is itself a group under the
operation in ? One could appeal to the definition and check all four properties,
but it is su cient to check just two.

Theorem 130 Let ( ) be a group and let be a non-empty subset of .
Then is a subgroup of if and only if the following two properties hold:
a. Closure: If then
b. Inverses: For every there exists such that = =

Proof. If is a subgroup of , properties (a) and (b) hold by definition.
Conversely, suppose that is a non-empty subset of in which properties
(a) and (b) hold. Associativity is inherited from i.e., if then as
elements of ( ) = ( ) . Identity: Since 6= choose an element
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Then 1 since has inverses by property (b) Furthermore,
operation is closed in by property (a) so that 1 But 1 =
since and 1 are elements of so as required. Therefore is a
subgroup of

Proposition 131 The set T of all translations is an abelian group.

Proof. Closure and commutativity follow from Proposition 33; the existence
of inverses was proved in Exercise 7. Therefore T is an abelian subgroup of I
by Theorem 130, and consequently T is an abelian group.

Proposition 132 The set R of all rotations about a point is an abelian
group.

Proof. The proof is left as an exercise for the reader.

Exercises
1. Prove that the set R of all rotations about a point is an abelian group.

2. Prove that the set E of all even isometries is a non-abelian group.

3. Prove that the set D of all dilatations is a non-abelian group.

4.2 Groups of Symmetries
In this section we observe that the set of symmetries of a given plane figure is
a group, called the symmetry group of Consequently, symmetry groups are
always subgroups of I (the group of all isometries).

Definition 133 A plane figure is a non-empty subset of the plane.

Definition 134 Let be a plane figure. An isometry is a symmetry of if
and only if fixes

Theorem 135 Let be a plane figure. The set of all symmetries of is a
group, called the symmetry group of

Proof. Let be a plane figure and let S = { : is a symmetry of }
Since the identity S, the set S is a non-empty subset of I
Closure: Let S By Exercise 1.1.3, the composition of isometries is an
isometry. So it su ces to check that fixes But since S we have
( ) ( ) = ( ( )) = ( ) =

Inverses: Let S; we know that 1 I by Exercise 1.1.7; we must show
that 1 fixes But 1 ( ) = 1 ( ( )) =

¡
1

¢
( ) = so that 1

also fixes . Thus 1 S whenever S.
Therefore S is a group by Theorem 130.
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Example 136 (The Dihedral Group 3) Let denote an equilateral triangle
positioned with its centroid at the origin and one vertex on the -axis. There
are exactly six symmetries of , namely, the identity two rotations 120 and

240 about the centroid, and three reflections and where and
have respective equations 3 3 = 0; = 0; and 3 + 3 = 0 (see Figure
4.1)

Figure 4.1: Lines of symmetry and

The multiplication table for composing these various symmetries appears in
Table 4.1 below. Closure holds by inspection. Furthermore, since each row and
column contains the identity element in exactly one position, each element has
a unique inverse. By Theorem 130 these six symmetries form a group 3 called
the Dihedral Group of order 6.

120 240

120 240

120 120 240

240 240 120

240 120

120 240

240 120

Table 4.1: The Dihedral Group of Order 6

Look carefully at the upper left 4 × 4 block in Table 4.1 above. This is
the multiplication table for the rotations { 120 240} 3 (the identity is
a rotation through angle 0); we shall denote this set by 3 Once again we see
that composition is closed in 3 and the inverse of each element in 3 is also in
3 Therefore 3 is a group; the symbol “ 3” stands for “cyclic group of order
3”.
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Definition 137 A plane figure has point symmetry if and only if some (non-
identity) rotation is a symmetry of The center of a (non-identity) rotational
symmetry of is called a point of symmetry for

Definition 138 A plane figure has line symmetry if and only if some reflec-
tion is a symmetry of The reflecting line of a reflection symmetry of is
called a line of symmetry for

Definition 139 A plane figure has bilateral symmetry if and only if has
a unique line of symmetry and no points of symmetry.

Corollary 140 The two symmetries of a figure with bilateral symmetry form
a group denoted by 1 The four symmetries of a non-square rhombus form a
group denoted by 2 For 3 the 2 symmetries of a regular -gon form a
group denoted by

Proof. A plane figure with bilateral symmetry has one line of symmetry
and one rotational symmetry (the identity). A non-square rhombus has two
lines of symmetry and two rotational symmetries about the centroid (including
the identity). If 3 a regular -gon has lines of symmetry and rota-
tional symmetries about the centroid (including the identity). These sets of
symmetries form groups by Theorem 135.

Definition 141 For 1 the group is called the dihedral group of order 2 .

Definition 142 Let be a group, let , and define 0 = The group is
cyclic if and only if for all there is an element (called a generator)
such that = for some Z . A cyclic group with elements is said
to be cyclic of order A cyclic group with infinitely many elements is said
to be infinite cyclic.

Example 143 Observe that the elements of 3 = { 120 240} can be ob-
tained as powers of either 120 or 240. For example,

120 =
1
120; 240 =

2
120; and = 120 240 =

3
120

We say that 120 and 240 “generate” 3 Also observe that this 4 × 4 block is
symmetric with respect to the upper-left-to-lower-right diagonal. This indicates
that 3 is an abelian group. More generally, let be a point, let be a positive
integer and let = 360 Then for each integer , = and =

360 = Therefore the group of rotations generated by is cyclic with
elements and is denoted by

If is the centroid of a regular -gon with 3, the finite cyclic group
of rotations introduced in Example 143 is the abelian subgroup of rotations
in On the other hand, can be realized as the symmetry group of a
3 -gon constructed as follows: For = 4 cut a square out of paper and draw
its diagonals, thereby subdividing the square into four congruent isosceles right
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triangles with common vertex at the centroid of the square. From each of the
four vertices, cut along the diagonals stopping midway between the vertices
and the centroid. With the square positioned so that its edges are vertical or
horizontal, fold the triangle at the top so that its right-hand vertex aligns with
the centroid of the square. Rotate the paper 90 and fold the triangle now at
the top in a similar way. Continue rotating and folding until you have what
looks like a flattened pinwheel with four paddles (see Figure 4.2). The outline
of this flattened pinwheel is a dodecagon (12-gon) whose symmetry group is 4

generated by either 90 or 270 For a general one can construct a 3 -gon
whose symmetry group is cyclic of order by cutting and folding a regular
-gon in a similar way to obtain a pinwheel with paddles.

Fold along the dotted linesCut along the dotted lines
Figure 4.2: A polygon whose symmetry group is cyclic of order 4.

Example 144 Let be a non-identity translation; let be any point and
let = ( ) Then = PQ and 2 = PQ PQ = 2PQ Inductively,

= 1 = ( 1)PQ PQ = PQ for each N Furthermore,
( )

1
= ( PQ)

1
= PQ = , so distinct integer powers of are dis-

tinct translations. It follows that the set = { : Z} is infinite. Note that
is a group: inverses were discussed above and closure follows from the fact

that = + Since every element of is an integer power of (or
1) is the infinite cyclic group generated by (or 1).

Let be a group and let be a non-empty subset of The symbol h i
denotes the set of all (finite) products of powers of elements of and their
inverses. If = { 1 2 } we abbreviate and write h 1 2 i instead of
h{ 1 2 }i Thus h i is automatically a subgroup of since it is non-empty,
the group operation is closed and contains the inverse of each element in h i.

Definition 145 Let be a group and let be a non-empty subset of The
subgroup h i is referred to as the subgroup of generated by A subset
is said to be a generating set for if and only if = h i A group is

finitely generated if and only if there exists a finite set such that = h i.
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Example 146 A cyclic group with generator has the property that
= h i So { } is a generating set for

Example 147 Let be a non-identity translation Then h i is infinite cyclic
since 6= for all 6= 0 (see Example 144).

Example 148 Let be the set of all reflections. Since every reflection is
its own inverse, h i consists of all (finite) products of reflections. By The
Fundamental Theorem of Transformational Plane Geometry every isometry of
the plane is a product of reflections. Therefore h i = I , i.e., the group of all
isometries, is infinitely generated by the set of all reflections.

Example 149 Let denote the set of all halfturns. Since the composition of
two halfturns is a translation, the composition of two translations is a trans-
lation, and every translation can be written as a composition of two halfturns,
H = h i is infinitely generated and is exactly the set of all translations and
halfturns.

Exercises
1. Recall that the six symmetries of an equilateral triangle form the dihedral
group 3 (see Example 136). Show that the set = { 120 } is a
generating set for 3 by writing each of the other four elements in 3

as a product of powers of elements of and their inverses. Compute
all powers of each element in 3 and show that no single element alone
generates 3 Thus 3 is not cyclic.

2. The dihedral group 4 consists of the eight symmetries of a square. When
the square is positioned with its centroid at the origin and its vertices on
the axes, the origin is a point of symmetry and the lines : = 0
: = : = 0 and : = are lines of symmetry. Construct a
multiplication table for 4 = { 90 180 270 }

3. Find the symmetry group of

a. A parallelogram that is neither a rectangle nor a rhombus.

b. A rhombus that is not a square.

4. Find the symmetry group of each capital letter of the alphabet written in
its most symmetric form.

5. Determine the symmetry group of each figure below:
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6. The discussion following Example 143 describes how to construct a 3 -
gon whose symmetry group is where 3 Alter this construction to
obtain a 2 -gon whose symmetry group is

7. Let be a point. For which rotation angles is
®
an infinite group?

4.3 The Rosette Groups
Definition 150 A rosette is a plane figure with the following properties:

1. There exists a non-identity rotational symmetry of with minimal posi-
tive rotation angle , i.e., if is any non-identity rotational symmetry
of then 0

2. All non-identity rotational symmetries of have the same center

The symmetry group of a rosette is called a rosette group.

Typically one thinks of a rosette as a pin-wheel (see Figures 4.2) or a flower
with -petals (See Figure 4.3). However, a regular polygon, a non-square rhom-



4.3. THE ROSETTE GROUPS 91

bus, a yin-yang symbol and a pair of perpendicular lines are rosettes as well.

Figure 4.3: A typical rosette.

In the early sixteenth century, Leonardo da Vinci determined all possible
finite groups of isometries; all but two of which are rosette groups. The two
exceptions are 1 which contains only the identity, and 1 which contains the
identity and one reflection. Note that 1 is isomorphic to the rosette group 2

which contains the identity and one halfturn.

Theorem 151 (Leonardo’s Theorem): Every finite group of isometries is
either or for some 1

Proof. Let be a finite group of isometries. Then contains only rota-
tions and reflections since non-identity translations and glide reflections would
generate infinite subgroups.

Case 1: Suppose that contains only rotations. If = { }, then = 1

and the result holds. So assume that contains a non-identity rotation
I claim that every non-identity rotation in has center Suppose, on the
contrary, that contains another non-identity rotation with 6= Let
0 = ( ); then 0 6= since is not a fixed point. Conjugating

by gives 1 = 0 which is an element of by clo-
sure. Furthermore, 0

1 = 0 again by closure. But
+( ) 0 so 0 is a non-identity translation by the Angle Addi-

tion Theorem (121), contradicting the fact that contains no translations. So
every non-identity rotation in has center . To prove that is cyclic recall
that every congruence class of angles has a unique class representative in the
range 0 360 Write each element in uniquely in the form with
0 360. Since is finite, there is a rotation in with the smallest
positive rotation angle Thus if then 360 by the minimal-
ity of and there is a positive integer such that ( + 1) Thus
0 Now if both of these inequalities were strict, would
be a positive rotation angle strictly less than which violates the minimality
of Therefore = or = ( + 1) i.e., = for some integer
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Consequently, = and is cyclic.

Case 2: Suppose that contains reflections. Let be the subset of rotations in
and let = { 1 2 } 1 be the subset of reflections in . Since
is a subgroup of the rotation group R (see Proposition 132), = for

some 1 by Case 1 above and is generated by some rotation = i.e.,
=
©

2
ª
I claim = Choose a reflection and note that the

subset =
©

2
ª

contains distinct odd isometries,
which must be reflections since has no glide reflections. Therefore and

On the other hand, the subset = { 1 2 }
contains distinct even isometries, which must be rotations since has no
translations. Therefore and Thus = and = h i con-
tains exactly rotations and reflections. If = 1 then = h i = 1 But
if 1 then = So for each integer there is some integer such that

= Hence the axis of passes through and all lines of symmetry are
concurrent at Therefore =

An immediate consequence of Leonardo’s Theorem is the following:

Corollary 152 The rosette groups are either dihedral or finite cyclic
with 2.

While the notion of “symmetry type” is quite subtle for general plane figures,
we can make the idea precise for rosettes. Let 1 and 2 be rosettes with the
same minimal positive rotation angle and respective centers and Let
= AB; then 1 = ( ) = and there is an isomorphism of

cyclic groups :
® ®

given by ( ) = 1 If 1 and 2 have
no lines symmetry, then is an isomorphism of symmetry groups. On the other
hand, if the respective symmetry groups 1 and 2 have reflections 1

and 2 the lines and are either intersecting or parallel. If parallel,
= ( ) and 1 = ( ) = in which case ( ) = 1 is an

isomorphism of symmetry groups. If and intersect and the directed angle
measure from to is then

¡ ¢ ¡ ¢ 1
= ( )( ) =

and ( ) =
¡ ¢ ¡ ¢ 1

is an isomorphism of symmetry groups
Now if is any group and , the function : defined by

( ) = 1 is an isomorphism, as the reader can easily check. In particular,
the map defined above is the restriction to 1 of an isomorphism : I I
where I denotes the group of all plane isometries. We summarize this discussion
in the definitions that follows:

Definition 153 Let be a group and let The isomorphism :
defined by ( ) = 1 is called an inner automorphism of

Definition 154 Let 1 and 2 be rosettes with respective symmetry groups 1

and 2 Rosettes 1 and 2 have the same symmetry type if and only if there is
an an inner automorphism of I that restricts to an isomorphism : 1 2
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Corollary 155 Two rosettes have the same symmetry type if and only if their
respective symmetry groups are isomorphic.

Exercises

1. Refer to Exercise 4 in Section 1 above. Which capital letters of the alpha-
bet written in most symmetry form are rosettes?

2. For 2 the graph of the equation = cos in polar coordinates is a
rosette.

a. Find the rosette group of the graph for each 2

b. Explain why the graph of the equation = cos in polar coordinates
is not a rosette.

3. Find at least two rosettes in your campus architecture and determine their
rosette groups.

4. Identify the rosette groups of the figures in the following that are rosettes:

5. Identify the rosette groups of the following rosettes:
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4.4 The Frieze Groups

Frieze patterns are typically the familiar decorative borders often seen on walls
or facades extended infinitely far in either direction (See Figure 4.4).

Figure 4.4: A typical frieze pattern.

In this section we identify all possible symmetries of frieze patterns and reach

the startling conclusion that every frieze pattern is one of seven distinctive
symmetry types.

Definition 156 Let be a translation. The length of , denoted by k k is the
length of the vector of

Definition 157 A frieze pattern is a plane figure with the following proper-
ties:

1. There exists a translational symmetry of with minimal length, i.e., if
0 is any non-identity translational symmetry of then 0 k k k 0k

2. All non-identity translational symmetries of fix the same lines.
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The symmetry group of a frieze pattern is called a frieze group.

Consider an row of equally spaced letter R’s extending infinitely far in either
direction (see Figure 4.5)

Figure 4.5: Frieze pattern 1

This frieze pattern, denoted by 1 has only translational symmetry. There are

two translational symmetries of minimal length (the distance between centroid
of consecutive R’s)–one shifting left; the other shifting right. Let be a trans-
lational symmetry of shortest length; then 6= for all 6= 0 and the frieze
group of 1 is the infinite cyclic group F1 = h i = { : Z}
The second frieze pattern 2 has a glide reflection symmetry (see Figure 4.6).

Let be a glide reflection such that 2 is a translational symmetry of shortest
length. Then 6= for all 6= 0 and 2 generates the translation subgroup.
The frieze group of 2 is the infinite cyclic group F2 = h i = { : Z}
Note that while the elements of F1 and F2 are very di erent, the two groups
are isomorphic.

Figure 4.6: Frieze pattern 2

The third frieze pattern 3 has vertical line symmetry (see Figure 4.7).
Let be a line of symmetry. Choose a line such that = is a
translational symmetry of minimal length. Then is also a line of symmetry
since = and the composition of symmetries is a symmetry (Theorem
135). In general, the reflection is a symmetry for each Z; these
reflections determine all lines of symmetry. The frieze group of 3 is F3 =
h i = { : Z; = 0 1} which is the infinite dihedral group

Figure 4.7: Frieze pattern 3
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Frieze pattern 4 has halfturn symmetry (see Figure 4.8). Let be a point of
symmetry. Choose a point such that = is a translational symmetry
of shortest length. Then is also a point of symmetry since = .
In general, the halfturn is a symmetry for each Z; these halfturns
determine all points of symmetry. The frieze group of 4 is F4 = h i =
{ : Z; = 0 1}

Figure 4.8: Frieze pattern 4

The fifth frieze pattern 5 can be identified by its halfturn symmetry and
glide reflection symmetry (see Figure 4.9). In addition, 5 has vertical line
symmetry, but as we shall see, these symmetries can be obtained by composing
a glide reflection with a halfturn. Let be a point of symmetry and let be
a glide reflection such that 2 is a translational symmetry of shortest length.
Choose a point such that 2 = . Then is also a point of symmetry
since = 2 . In general, the halfturn 2 is a symmetry for
each Z; these halfturns determine all points of symmetry. Now the line
symmetries can be obtained from and as follows: Let be the horizontal
axis of let be the vertical line through and let be the vertical line
such that = Then = so that = and the
line symmetries are the reflections 2 with Z. The frieze group of 5

is F5 = h i = { : Z; = 0 1} Note that F3 F4 and F5 are
isomorphic groups.

Figure 4.9: Frieze pattern 5

In Figure 4.10 we picture the frieze pattern 6 which has a unique hor-
izontal line of symmetry Thus the frieze group of 6 is F6 = h i =
{ : Z; = 0 1} The reader should check that F6 is abelian (see
Exercise 5). Consequently F6 is not isomorphic to groups F3 F4 and F5.
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Figure 4.10: Frieze pattern 6

The final frieze group 7 has vertical line symmetry and a unique horizontal
line of symmetry (see Figure 4.11). Let be a vertical line of symmetry and
let be a translational symmetry of shortest length. Then the vertical line
symmetries are the reflections with Z and the point = is a
point of symmetry since = . Thus the halfturn symmetries are the
halfturns with Z. The frieze group of 7 is F7 = h i =©

: Z; = 0 1
ª

Figure 4.11: Frieze pattern 7

We collect the observations above as a theorem, however the proof that this
list exhausts all possibilities is omitted:

Theorem 158 Every frieze group is one of the following:

F1 = h i F2 = h i
F3 = h i F4 = h i F5 = h i
F6 = h i
F7 = h i

where is a translation of shortest length, is a glide reflection such that
2 = , is a vertical line of symmetry, is a point of symmetry and is the
unique horizontal line of symmetry.

The following flowchart can be used to identify the frieze group associated
with a particular frieze pattern:



98 CHAPTER 4. SYMMETRY

Exercises
1. Find at least two friezes in your campus architecture and identify their
frieze groups.

2. Find the frieze group for the pattern in Figure 4.4.

3. Prove that frieze group F6 is abelian.



4.4. THE FRIEZE GROUPS 99

4. Identify the frieze groups for the following:

5. Identify the frieze groups of the following friezes taken from Theodore
Menten’s Japanese Border Designs in the Dover Pictorial Archive Series:
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6. Identify the frieze groups for the following figures that are friezes:

4.5 The Wallpaper Groups
This section introduces the symmetry groups of wallpaper patterns and provides
the vocabulary and techniques necessary to identify them. We omit much of
the theoretical development and state the classification theorem without proof.

Definition 159 Two translations are independent if and only if their respective
glide vectors are linearly independent.

Definition 160 A wallpaper pattern is a plane figure with independent trans-
lational symmetries 1 and 2 satisfying the following property: Given any
translational symmetry there exist integers and such that = 2 1.
Translations 1 and 2 are called basic translations. The symmetry group of a
wallpaper pattern is called a wallpaper group.
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Thus h 1 2i is the subgroup of translational symmetries in the wallpaper group
of .

Figure 4.12: A typical wallpaper pattern.

Definition 161 Let be a wallpaper pattern with basic translations 1 and
2. Given any point , let = 1 ( ) = 2 ( ) and = 2 ( ) The
unit cell of with respect to , 1 and 2 is the plane region bounded by par-
allelogram ¤ . The translation lattice of determined by is the set of
points { ( 2 1 ) ( )| Z} ; this lattice is square, rectangular, or rhombic
if and only if the unit cell of with respect to , 1 and 2 is square, rectan-
gular or rhombic.

Figure 4.13: A typical translation lattice and unit cell.

Definition 162 Let be a wallpaper pattern. A point is an -center of
if and only if the group of rotational symmetries of centered at is with

1.

Theorem 163 The symmetries of a wallpaper pattern fix the set of -centers,
i.e., if is an -center of and is a symmetry of then ( ) is an
-center of
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Proof. Let be a wallpaper pattern with symmetry group W and let be
an -center of Since is the subgroup of rotational symmetries with

center there is a smallest positive real number such that = . Now
if W and = ( ) then 1 = ± W by closure and

± =
¡

1
¢
= 1 = But W if and only if

W so = . Thus is an -center for some By the same

reasoning,
¡

1
¢ ¡

1
¢ 1

= ± W implies that = , in which
case is an -center with Therefore = and is an -center as
claimed.

Two -centers in a wallpaper patterns cannot be arbitrarily close to one
another.

Theorem 164 Let be a wallpaper pattern and let be a translational symme-
try of shortest length. If and are distinct -centers of , then 1

2 k k

Proof. Let 1 and consider distinct -centers and Then 360

and 360 are elements of the wallpaper group W By closure and the Angle
Addition Theorem, 360 360 is a non-identity translation inW Since
every translation in W is generated by two basic translations 1 and 2, there
exist integers and not both zero, such that 360 360 = 2 1

or equivalently,

360 = 2 1 360

Consider the point in the translation lattice determined by given by

=
³

2 1

´
( ) =

³
2 1

´³
360 ( )

´
= 360 ( )

Note that 6= since and are not both zero. Thus k k Now
if = 2 = ( ) ; and if 2 4 is isosceles. In either case,

= But + by the triangle inequality so it follows
that 2 k k

The next theorem, which was first proved by the Englishman W. Barlow
in the late 1800’s, is quite surprising. It tells us that wallpaper patterns can-
not have 5-centers; consequently, crystalline structures cannot have pentagonal
symmetry.

Theorem 165 (The Crystallographic Restriction) If is an -center of a wall-
paper pattern , then {2 3 4 6}

Proof. Let be an -center of and let be a translation of shortest
length. We begin with an indirect argument that allows us to choose an -
center 6= whose distance from is a minimum. Suppose that no such
exists. Then there is an infinite sequence of -centers { } such that 1

2 · · · By Theorem 164, 1
2 k k for all so that { } is a strictly

decreasing sequence of positive numbers converging to 1
2 k k i.e., given
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0 there is a positive integer such that if then
+ But this means that infinitely many -centers lie within of the

circle centered at of radius which is impossible since 1
2 k k for

all So choose an -center whose distance from is a minimum and
let = 360 ( ) By Theorem 163, is an -center and = Let
= 360 ( ) ; then is an -center and = If = then 4

is equilateral in which case the rotation angle is 60 and = 6 If 6= then
by the choice of = = in which case the rotation angle is
at least 90 and 4 Therefore is one of 2 3 4 or 6.

Corollary 166 A wallpaper pattern with a 4-center has no 3 or 6-centers.

Proof. If is a 3-center and is a 4-center of a wallpaper pattern , the
corresponding wallpaper group W contains the rotations 120 and 90. By
closure, W also contains the 30 rotation 120 90 which generates 12

Therefore there is an -center of with 12 But this contradicts Theorem
165. Similarly, if is a 4-center and is a 6-center of , there is also an
-center of with 12 since 60 90 is a 30 rotation.

In addition to translational symmetry, wallpaper patterns can have line sym-
metry, glide reflection symmetry, and 180 120 90 or 60 rotational symme-
try. Since the only rotational symmetries in a frieze group are halfturns, it is not
surprising to find more wallpaper groups than frieze groups. We shall identify
seventeen distinct wallpaper groups but we omit the proof that every wallpaper
group is one of these seventeen. Throughout this discussion, denotes a wall-
paper pattern. We use the international standard notation to denote the various
wallpaper groups. Each symbol is a string of letters and integers selected from

and 1 2 3 4 6 The letter stands for .
The points in a primitive translation lattice are the vertices of parallelograms
with no interior points of symmetry. When a point of symmetry lies at the
center of some unit cell, we use the letter . The letter stands for
and indicates lines of symmetry; the letter indicates glide reflection symmetry.
Integers indicate the maximum order of the rotational symmetries of
There are four symmetry types of wallpaper patterns with no -centers.

These are analyzed as follows: If has no line symmetry or glide reflection
symmetry, the corresponding wallpaper group consists only of translations and
is denoted by 1 If has glide reflection symmetry but no lines of symmetry,
the corresponding wallpaper group is denoted by . There are two ways that
both line symmetry and glide reflection symmetry can appear in : (1) the
axis of some glide reflection symmetry is not a line of symmetry and (2) the
axis of every glide reflection symmetry is a line of symmetry. The corresponding
wallpaper groups are denoted by and respectively.
There are five symmetry types whose -centers are all 2-centers. If has

neither lines of symmetry nor glide reflection symmetries, the corresponding
wallpaper group is denoted by 2 If has no line symmetry but has glide
reflection symmetry, the corresponding group is denoted by . If has



104 CHAPTER 4. SYMMETRY

parallel lines of symmetry, the corresponding group is denoted by If
has lines of symmetry in two directions, there are two ways to configure them
relative to the 2-centers in : (1) all 2-centers lie on a line of symmetry and (2)
not all 2-centers lie on a line of symmetry. The corresponding wallpaper groups
are denoted by and respectively.
Three wallpaper patterns have -centers whose smallest rotation angle is

90 Those with no lines of symmetry have wallpaper group 4 Those with
lines of symmetry in four directions have wallpaper group 4 ; other patterns
with lines of symmetry have wallpaper group 4
Three symmetry types have -centers whose smallest rotation angle is 120

Those with no lines of symmetry have wallpaper group 3 Those whose 3-
centers lie on lines of symmetry have wallpaper group 3 1; those with some
3-centers o lines of symmetry have wallpaper group 31
Finally, two symmetry types have -centers whose smallest rotation angle is

60 Those with line symmetry have wallpaper group 6 ; those with no line
symmetry have wallpaper group 6

Theorem 167 Every wallpaper group is one of the following:

1 2 4 3 6
4 3 1 6
4 31

The following flowchart can be used to identify the wallpaper group associ-
ated with a particular wallpaper pattern:
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Example 168 Here are some wallpaper patterns from around the world. Try
your hand at identifying their respective wallpaper groups.

Exercises
1. Identify the wallpaper group for the pattern in Figure 4.12.
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2. Find at least two di erent wallpaper patterns on your campus and identify
their wallpaper groups.

3. Identify the wallpaper groups for the following patterns.

4. Prove that if and are distinct points of symmetry for a plane figure
the symmetry group of contains a non-identity translation, and con-

sequently has infinite order. (Hint: Consider all possible combinations of
and such that is an -center and is an -center.)
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5. Identify the wallpaper groups for the following patterns:
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6. Identify the wallpaper groups for the following patterns:
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7. Identify the wallpaper groups for the following patterns:


