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Introduction

Euclidean plane geometry is the study of size and shape of objects in the plane.

It is one of the oldest branches of mathematics. Indeed, by 300 BC Euclid had

deductively derived the theorems of plane geometry from his five postulates.

More than 2000 years later in 1628, René Descartes introduced coordinates

and revolutionized the discipline by using analytical tools to attack geometrical

problems. To quote Descartes, “Any problem in geometry can easily be reduced

to such terms that a knowledge of the lengths of certain lines is sufficient for its

construction.”

About 250 years later, in 1872, Felix Klein capitalized on Descartes’ ana-

lytical approach and inaugurated his so called Erlangen Program, which views

plane geometry as the study of those properties of plane figures that remain

unchanged under some set of transformations. Klein’s startling observation

that plane geometry can be completely understood from this point of view is

the guiding principle of this course and provides an alternative to Eucild’s ax-

iomatic/synthetic approach. In this course, we consider two such families of

transformations: (1) isometries (distance-preserving transformations), which in-

clude the translations, rotations, reflections and glide reflections and (2) plane

similarities, which include the isometries, stretches, stretch rotations and stretch

reflections. Our goal is to understand congruence and similarity of plane figures

in terms of these particular transformations.

The classification of plane isometries and similarities solves a fundamental

problem of mathematics, namely, to identify and classify the objects studied

up to some equivalence. This is mathematics par excellence, and a beautiful

subtext of this course. The classification of isometries goes like this:

1. Every isometry is a product of three or fewer reflections.

2. A composition of two reflections in parallel lines is a translation.

3. A composition of two reflections in intersecting lines is a rotation.

4. The identity is both a trivial translation and a trivial rotation.

5. Non-identity translations are fixed point free, but fix every line in the

direction of translation.

6. A non-identity rotation, which fixes exactly one point, is not a translation.

v
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7. A reflection, which fixes each point on its axis, is neither a translation nor

a rotation.

8. A composition of three reflections in concurrent or mutually parallel lines

is a reflection.

9. A composition of three reflections in non-concurrent and non-mutually

parallel lines is a glide reflection.

10. A glide reflection, which has no fixed points, is neither a rotation nor a

reflection.

11. A glide reflection, which only fixes its axis, is not a translation.

12. An isometry is exactly one of the following: A reflection, a rotation, a

non-identity translation, or a glide reflection.

Some comments on instructional methodology are worth mentioning. Geom-

etry is a visual science, i.e., each concept needs to be contemplated in terms of a

(often mental) picture. Consequently, there will be ample opportunity through-

out this course for the student to create and (quite literally) manipulate pic-

tures that express the geometrical content of the concepts. This happens in two

settings: (1) Daily homework assignments include several problems from the

ancillary text Geometry: Constructions and Transformations, by Dayoub and

Lott (Dale Seymour Publications, 1977 ISBN 0-86651-499-6); each construction

requires a reflecting instrument such as a MIRA. (2) Biweekly laboratory as-

signments using the software package Geometer’s Sketchpad lead the student

through exploratory activities that reinforce the geometric principles presented

in this text. Several of these assignments have been selected from the ancillary

text Rethinking Proof with Geometer’s Sketchpad by Michael de Villiers (Key

Curriculum Press, 1999 ISBN 1-55953-323-4) and used by permission. This text

complements the visualization skills gained using the MIRA and Geometer’s

Sketchpad by presenting each concept both synthetically (coordinate free) and

analytically. Exercises throughout the text accommodate both points of view.

The power of abstract algebra is introduced gently and slowly; prior knowledge

of abstract algebra is not assumed.

Finally, I wish to thank George E. Martin, author of the text Transformation

Geometry, UTM Springer-Verlag, NY 1982, for his encouragement and permis-

sion to reproduce some of the diagrams in his text, and my colleagues Zhigang

Han and Elizabeth Sell, for carefully reading the manuscript and offering many

suggestions that helped to clarify and streamline the exposition.

January 30, 2012



Chapter 1

Isometries

The first three chapters of this book are dedicated to the study of isometries

and their properties. Isometries, which are distance-preserving transformations

from the plane to itself, appear as reflections, translations, glide reflections, and

rotations. The proof of this profound and remarkable fact will follow from our

work in this and the next two chapters.

1.1 Transformations of the Plane

We denote points (respectively lines) in R2 by upper (respectively lower) case
letters such as     (respectively      ) Functions are denoted by

lower case Greek letters such as    

Definition 1 A transformation of the plane is a function  : R2 → R2 with
domain R2

Example 2 The identity transformation  : R2 → R2 is defined by  ( ) = 

Definition 3 A transformation  : R2 → R2 is injective (or one-to-one) if and
only if for all  ∈ R2 if  6=  then ( ) 6= () i.e., distinct points have

distinct images.

Example 4 The transformation 
³£




¤´
=
£
2



¤
fails to be injective because


¡£−1

1

¤¢
= 

¡£
1
1

¤¢
while

£−1
1

¤ 6= £1
1

¤


As our next example illustrates, one can establish injectivity by verifying the

contrapositive of the condition in Definition 3, i.e., under the assumption that

( ) = () prove  = .

Example 5 To show that the transformation 
³£




¤´
=
£
+2
2−

¤
is injective,

assume that 
¡£



¤¢
= 

¡£



¤¢
 Then∙
+ 2

2− 

¸
=

∙
+ 2

2− 

¸


1
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and by equating  and  coordinates we obtain

+ 2 = + 2

2−  = 2− 

A simple calculation now shows that  =  and  =  so that
£



¤
=
£



¤
.

Definition 6 A transformation  : R2 → R2 is surjective (or onto) if and only
if given any point  ∈ R2 there is some point  ∈ R2 such that ( ) =  i.e.,

R2 is the range of .

Example 7 The transformation 
³£




¤´
=
£
2



¤
discussed in Example 4 fails to

be surjective because there is no point
£



¤ ∈ R2 for which 
³£




¤´
=
£−1
1

¤


Example 8 Let’s show that the transformation 
³£




¤´
=
£
+2
2−

¤
discussed in

Example 5 is surjective. Let  =
£



¤ ∈ R2 We must answer the following
question: Are there choices for  and  such that 

³£



¤´
=
£



¤
? Equivalently,

does
£
+2
2−

¤
=
£



¤
for appropriate choices of  and ? The answer is yes if the

system
+ 2 = 

2−  = 

has a solution, which indeed it does since the determinant

¯̄̄̄
1 2

2 −1
¯̄̄̄
= −1−4 =

−5 6= 0 By solving simultaneously for  and  in terms of  and  we find that

 = 1
5
+ 2

5


 = 2
5
− 1

5


Therefore 
³£ 1

5
+ 2

5


2
5
− 1

5


¤´
=
£



¤
and  is surjective by definition.

Definition 9 A bijective transformation is both injective and surjective.

Example 10 The transformation  discussed in Examples 5 and 8 is bijective;

the transformation  discussed in Examples 4 and 7 is not.

Definition 11 Let  be a bijective transformation, let  be any point, and let

 be the unique point such that  () =  The inverse of  denoted by −1
is the function defined by −1 ( ) = 

Proposition 12 Let  be a bijective transformation. Then  = −1 if and only
if  ◦  =  ◦  = .

Proof. Suppose  = −1 If  is any point and  = −1 ( )  then
( ◦ ) ( ) = 

¡
−1 ( )

¢
=  () =  so that  ◦  =  Similarly, if  is
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any point and  =  ()  then ( ◦ ) () =  ( ()) =  ( ) = −1 ( ) = 

so that  ◦ =  Conversely, suppose ◦ =  ◦ = . If  is any point and 

is the unique point such that  () =  then  ( ) =  ( ()) = ( ◦ ) () =
 () =  so that  = −1 by Definition 11.

We adopt the following notation: If  and  are distinct points, the symbols

 
−−→


←→
 and  denote the distance between  and  the line

segment connecting  and  the ray from  through  the line through 

and  and the circle centered at  containing  respectively. When   and

 are distinct collinear points with  between  and  we write − − 

One of the primary goals of this course is to understand distance-preserving

transformations and their properties.

Definition 13 An isometry is a distance-preserving transformation  : R2 →
R2 i.e., for all  ∈ R2 if  0 =  ( ) and 0 =  ()  then  =  00

Example 14 The identity transformation  is an isometry.

Proposition 15 Isometries are injective.

Proof. Let  be an isometry and let  and  be distinct points. Then

0 =  () and 0 =  () are distinct since 00 =   0

Isometries are also surjective. Our proof, which is somewhat technical, ap-

plies two useful propositions, which follow our next definition.

Definition 16 Let  be a point. Two or more lines or circles are concurrent at 

if each line or circle passes through 

Proposition 17 Three concurrent circles with non-collinear centers have a

unique point of concurrency.

Proof. We prove the contrapositive. Suppose three circles centered at 

 and  are concurrent at distinct points  and  Since these circles share

chord  their centers   and  lie on the perpendicular bisector of 

Definition 18 Let   and  be points such that  6=  and  6=  and

choose a unit of measure. If   and  are non-collinear, let  ∈ (0 ) be the
length of the unit arc centered at  and subtended by ∠ The measure of
∠ is the real number

1.  = 0 if  −−  or  = 

2.  =  if − − 

3.  = − if the angle from −−→ to
−−→
 is measured clockwise.

4.  =  if the angle from
−−→
 to

−−→
 is measured counter-clockwise
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The degree measure of ∠ denoted by ∠ is the real number Θ =
180

Note that ∠ = −∠whenever   and  are non-collinear.

Definition 19 Two real numbers Θ and Φ are congruent modulo 360 if and

only if Θ − Φ = 360 for some  ∈ Z, in which case we write Θ ≡ Φ The
symbol Θ◦ denotes the congruence class of Θ

Degree measure will be used exclusively throughout this text. Note that

each real number Θ is congruent to exactly one real number in (−180 180] 
Thus, if ∠ = Θ and ∠ = Φ we define ∠ + ∠

to be the unique element of (−180 180] congruent to Θ + Φ. For example, if
∠ = ∠ = 120 then ∠ +∠ = ∠ = −120
Proposition 20 If   and  are distinct points on a circle centered at 

then ∠ ≡ 2∠

Proof. Assume that ¤ is not a crossed quadrilateral so that  and 

lie on opposite sides of
←→
 (the crossed quadrilateral case is left as an exercise

for the reader). Label the interior angles of 4 and 4 as follows:

∠1 := ∠ ∠2 := ∠ ∠3 := ∠ ∠4 := ∠ ∠5 := ∠

and ∠6 := ∠ Note that the measures of these interior angles have the

same sign. Thus ∠1 = ∠2 ∠3 = ∠4 and ∠ = ∠2 +∠3 =
∠1 +∠4 Furthermore, the interior angle sum of ¤ is 360 ≡ ∠1 +
∠2+∠3+∠4+∠5+∠6 = 2∠2+2∠3+∠5+∠6 and it follows
that ∠ ≡ 360−∠5−∠6 ≡ 2∠2 + 2∠3 = 2∠

6

4

3

5

2
1

A

B

C

D

Figure 1.1.

To see that Proposition 20 only holds mod360, consider ¤ with

∠2 = ∠3 = 60 Then ∠ = 120 and ∠ = −120 ≡ 240 =

2∠

Definition 21 The congruence symbol “∼=” has the following meanings:
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1.  ∼=  if and only if  = 

2. ∠ ∼= ∠ if and only if |∠| = |∠ | 

3. 4 ∼= 4 if and only if  ∼=   ∼=   ∼= 

∠ ∼= ∠ ∠ ∼= ∠ and ∠ ∼= ∠

Since distinct elements of (−180 180] are not congruent (mod 360) we have
∠ ≡ ∠00 0 if and only if∠ = ∠00 0However,∠
≡ ∠00 0 implies ∠ ∼= ∠000 but not conversely. When checking
triangle congruence, it is not necessary to check congruence of all six corre-

sponding parts:

Theorem 22 4 ∼= 4 if and only if

1. SAS:  ∼=  ∠ ∼= ∠ and  ∼=  .

2. ASA: ∠ ∼= ∠  ∼=  and ∠ ∼= ∠

3. SAA:  ∼=  ∠ ∼= ∠ and ∠ ∼= ∠

4. SSS:  ∼=   ∼=  and  ∼= 

5. HL: ∠ and ∠ are right angles,  ∼=  and  ∼= 

Proof. The proof is left as an exercise for the reader.

The abbreviation “CPCTC” stands for “Corresponding Parts of Congruent

Triangles are Congruent.”

Theorem 23 Isometries are surjective.

Proof. Given an isometry  and an arbitrary point  let 0 =  ()  If

0 =  we’re done, so assume 0 6=  and consider an equilateral triangle

4 with sides of length 0 Let 0 =  () and  0 =  ()  Again,

if 0 =  or 0 =  we’re done, so assume 0 6=  and 0 6=  Then

00 =  0 0 =  and 00 =  ( is an isometry), and 400 0 ∼=
4 by SSS. Consider 400 which is non-degenerate since  0 and
 0 are distinct points on circle 0 and construct the point  on  such

that ∠ ∼= ∠00 Now ∠ = ±60 and Proposition 20 implies
2∠ ≡ ∠ = ±∠00 0 ≡ ±2∠00 so that ∠ =

±30 = ±∠00 Thus ∠ ∼= ∠0 0 and 4 ∼= 40 0 by AAS
(see Figure 1.2).
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AB

D

B

C'

A A'

B'

C

Figure 1.2.

Now 0 =  () is on 0 since 
0 =  = 00; 0 is on 0

 since 
0 =

 = 00 (CPCTC); and 0 is on 0 since 
0 =  = 00 (CPCTC).

Thus  and 0 are points of concurrency for circles 0 
0
 and  0 with non-

collinear centers. Therefore 0 =  by uniqueness in Proposition 17 (see Figure

1.3).

C'A

B'A

A'A

D

B

C'

A=D' A'

B'

C

Figure 1.3.

Proposition 24 Let  and  be isometries.

1. The composition  ◦  is an isometry.
2.  ◦  =  ◦  =  i.e., the identity transformation acts as an identity

element.

3. −1 is an isometry.

Proof. The proofs are left as exercises for the reader.

Definition 25 A transformation  : R2 → R2

• fixes a point  if  ( ) =  ;
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• is a collineation if  is bijective and sends lines to lines;
• is linear if for all £



¤

£



¤ ∈ R2 and all   ∈ R,


µ


∙




¸
+ 

∙




¸¶
= 

µ∙




¸¶
+ 

µ∙




¸¶


While isometries are collineations, they are not necessarily linear.

Proposition 26 Let  be an isometry; let   and  be distinct points; and

let 0 =  ()  0 =  ()  and  0 =  (). Then 

1. is a collineation.

2. preserves betweenness, i.e., if − − , then 0 −0 −  0

3. preserves angle measure up to sign, i.e., ∠00 0 ∼= ∠
4. sends circles to circles.

5. is linear if and only if  fixes the origin.

Proof. The proofs are left to the reader; item (5) is easy to prove using

vector analysis.

Exercises

1. Which of the following transformations are injective? Which are surjec-

tive? Which are bijective?


³£




¤´
=
£
3



¤

³£




¤´
=
£
cos 
sin 

¤

³£




¤´
=
£
3−


¤

³£




¤´
=
£
2
3

¤

³£




¤´
=
£ −
+3

¤

³£




¤´
=
£
3
+2

¤

³£




¤´
=
£ 3√


¤

³£




¤´
=
£−
−
¤


³£




¤´
=
£
+2
−3
¤

2. Prove that the composition of transformations is a transformation.

3. Prove that the composition of isometries is an isometry.

4. Prove that the composition of functions is associative, i.e., if    are

functions, then ◦( ◦ ) = ( ◦ )◦ (Hint: Show that [ ◦ ( ◦ )] ( ) =
[( ◦ ) ◦ ] ( ) for every element  in the domain.)

5. Prove that the identity transformation  is an identity element for the set

of all transformations with respect to composition, i.e., if  is a transfor-

mation, then  ◦  =  ◦  = 
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6. Prove that the inverse of a bijective transformation is a bijective transfor-

mation. (Remark: Exercises 2,4,5 and 6 show that the set of all bijective

transformations is a “group” under composition.)

7. Prove that the inverse of an isometry is an isometry (Remark: Exercises

3,4,5 and 7 show that the set of all isometries is a group under composi-

tion.)

8. Let  and  be bijective transformations. Prove that ( ◦ )−1 = −1 ◦
−1 i.e., the inverse of a composition is the composition of the inverses
in reverse order.

9. Find an example of a bijective transformation that is not a collineation.

10. Let  be the line with equation 2+3 +4 = 0. Using the fact that each

of the following transformations is a collineation, find the equation of the

image line 0

a. 
³£




¤´
=
£−


¤
.

b. 
³£




¤´
=
£

−
¤


c. 
³£




¤´
=
£−
−
¤


d. 
³£




¤´
=
£
5−
10−

¤


e. 
³£




¤´
=
£
+1
−3
¤


11. Which of the transformations in Exercise 1 are collineations? For each

collineation in Exercise 1, find the equation of the image of the line  with

equation  +  +  = 0.

12. Consider the collineation 
³£




¤´
=
£
3
−

¤
and the line 0 whose equation

is 3 −  + 2 = 0 Find the equation of the line  such that  () = 0

13. Prove Theorem 22.

14. Prove that an isometry is a collineation.

15. Prove that an isometry sends circles to circles.

16. Prove that an isometry  preserves betweenness.
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17. Prove that an angle and its isometric image are congruent.

18. Let   and  be distinct points on a circle centered at If ¤ is

a crossed quadrilateral, prove that∠ = 2∠ (Hint: Consider

the diameter  and triangles 4 and 4)

19. A point  lies in the interior of a non-degenerate triangle if there exist

points  and  on the triangle, at least one of which is not a vertex, such

that  −  −  Prove that two angle bisectors of a triangle meet at a

point in the interior of the triangle.

20. Use the result in Problem 19 to prove that the angle bisectors of a triangle

are concurrent at a point equidistant from the three sides. Thus every

triangle has an inscribed circle, called the incircle; its center point  is

called the incenter of the triangle.

1.2 Reflections

Definition 27 Let  be a line. The reflection in line  is the transformation

 : R2 → R2 such that

1. Each point  ∈  is fixed by 

2. If  ∈  and  0 =  ( )  then  is the perpendicular bisector of  0

Theorem 28 Reflections are isometries.

Proof. Let  be any line, let  and  be distinct points, and let  0 = ( )

and 0 = () and consider the various configurations of   and 

Case 1: Suppose that  and  lie on  Then  0 =  and 0 =  so  00 = 

as required.

Case 2: Suppose that  lies on  and  lies off of  Then  =  0 and  is the

⊥ bisector of 0
Subcase 2a: If

←→
 ⊥  then 0 lies on

←→
 and  is the midpoint of 0 so that

 = 0 =  00 as required.

Subcase 2b: Otherwise, let  be the point of intersection of  with
←−→
0 Observe

that 4 ∼= 40 by  where the angles considered here are the right
angles (see Figure 1.4).
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Figure 1.4.

Since corresponding parts of congruent triangles are congruent () we

have  = 0 =  00 as required.

Case 3: Suppose that both  and  lie off  and on the same side of 

Subcase 3a: If
←→
⊥, let  be the point of intersection of  with

←→
 If  

 then  = − =  0−0 =  00 and similarly if   

Subcase 3b: Otherwise, let  be the point of intersection of  with
←−→
 0 and let

 be the point of intersection of  with
←−→
0 Then 4 ∼= 4 0 by 

so that  =  0 by  (see Figure 1.5)

Figure 1.5.

Now
←−→
 0⊥ and ←−→0 ⊥ so ←−→ 0 k ←−→0. Lines ←→ and ←→ 0 are transversals

so ∠ ∼= ∠ ∼= ∠ 0 ∼= ∠0 0 Since  = 0 we have 4 ∼=
4 00 from which it follows that  =  00 by .

Case 4: Suppose that both  and  lie off  and on opposite sides of  Proofs

of the following subcases are left to the reader in Exercises 17:

Subcase 4a: If
←→
⊥ let  be the point of intersection of  with

←→


Subcase 4b: Otherwise, let  be the point of intersection of  with
←−→
 0, let 

be the point of intersection of  with
←−→
0

When R2 comes equipped with a Cartesian system of coordinates, one can

use analytic geometry to calculate the coordinates of  0 = ( ) from the

equation of  and the coordinates of  . We now derive the formulas (called

equations of ) for doing this. Let  be a line with equation ++ = 0 with
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2 + 2  0, and consider points  =
£



¤
and  0 =

£
0

0
¤
such that  0 = ( )

Assume for the moment that  is off  By definition,
←−→
 0 ⊥  So if neither 

nor
←−→
 0 is vertical, the product of their respective slopes is -1, i.e.,

−

· 

0 − 

0 − 
= −1

or

0 − 

0 − 
=






Cross-multiplying gives

(0 − ) = (0 − ) (1.1)

Note that equation (1.1) holds when  is vertical or horizontal as well. If  is

vertical, its equation is +  = 0 in which case  = 1 and  = 0 But reflection

in a vertical line preserves the -coordinate so that  = 0 On the other hand,
if  is horizontal its equation is  +  = 0 in which case  = 0 and  = 1 But

reflection in a horizontal line preserves the -coordinate so that  = 0 But this
is exactly what equation (1.1) gives in either case. Now the midpoint  of 

and  0 has coordinates

 =

∙+0
2

+0
2

¸


Since  lies on , its coordinates satisfy +  +  = 0 which is the equation

of line  Therefore



µ
+ 0

2

¶
+ 

µ
 + 0

2

¶
+  = 0 (1.2)

Now rewrite equations (1.1) and (1.2) to obtain the following system of linear

equations in 0 and 0 : ½
0 − 0 = 

0 + 0 = 


where  = −  and  = −2− −  Write this system in matrix form as∙
 −
 

¸ ∙
0

0

¸
=

∙




¸
 (1.3)

Since 2 + 2  0 the coefficient matrix is invertible, we may solve for
£
0

0
¤
and

obtain∙
0

0

¸
=

∙
 −
 

¸−1 ∙




¸
=

1

2 + 2

∙
 

− 

¸ ∙




¸
=

1

2 + 2

∙
+ 

− 

¸
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Substituting for  and  gives

0 =
1

2 + 2
[ (− ) +  (−2− − )] (1.4)

=
1

2 + 2

¡
2−  − 2− 2− 

¢
=

1

2 + 2

¡
2+ (2− 2)− 2− 2 − 2¢

= − 2

2 + 2
(+  + ) 

and similarly

0 =  − 2

2 + 2
(+  + )  (1.5)

Finally, if  =
£



¤
is on  then  +  +  = 0 and equations (1.4) and (1.5)

reduce to
0 = 

0 = 


in which case  is a fixed point as required by the definition of  We have

proved:

Theorem 29 Let  be a line with equation +  +  = 0 where 2+ 2  0

The equations of  (the reflection in line ) are:

0 = − 2
2+2

(+  + )

0 =  − 2
2+2

(+  + )
 (1.6)

Remark 30 The equations of  are not to be confused with the equation of

line 

Example 31 Let  be the line given by  −  + 5 = 0 The equations for 
are:

0 = − (−  + 5) =  − 5
0 =  − (−1) (−  + 5) = + 5

Thus 
¡£
0
0

¤¢
=
£−5
5

¤
and 

¡£
5
5

¤¢
=
£
0
10

¤


Definition 32 A non-identity transformation  is an involution if and only if

2 = 

Note that an involution  has the property that −1 = 

Proposition 33 A reflection is an involution.

Proof. Left as an exercise for the reader.

Trisecting a general angle with a straight edge and compass is a classical

unsolvable problem. Interestingly, this problem has a solution when the straight

edge and compass are replaced with a reflecting instrument such as a MIRA.

Thus the trisection algorithm presented here is an important application of

reflections, and the notion of parallel lines plays an importnat role.
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Definition 34 Two lines  and  are parallel if and only if  =  or ∩ = ∅.

Algorithm 35 (Angle Trisection) Given arbitrary rays
−−→
 and

−−→
 :

1. Choose a point  on
−−→


2. Locate the point  on
−−→
 such that  = 

3. Construct lines  and  through  such that  ⊥ −−→ and  ⊥ 

4. Locate the line  such that  () is on  and  is on  () 

5. Let  =  () 

Then ∠ = 2∠

n'

l

n

m

T'

T

P'

R

S

O

X

Y

P

S'

Figure 1.6. ∠ = 2∠

Proof. Let 0 =  () and  =  ∩ ←→; then ←→0 k ←→ since
←→
0 and←→

 are perpendicular to  and ∠ ∼= ∠0 since these are alternate
interior angles of parallels

←→
0 and

←→
 cut by transversal

←→
. Furthermore,

∠ ∼= ∠0 since these angles are vertical, and  =  by construction.

Therefore 4 ∼= 40 by ASA and 0 =  by CPCTC. Let  0 =
 ( )  

0 =  ( )  and 0 =  () ; then  0 is on 0 since  is on  and

 0 =  0 0 since reflections are isometries. Furthermore, 0 ⊥ ←→ 0 since  ⊥←→
0  Therefore 0 is the perpendicular bisector of  0 Since  is on 0 by
construction, 0 bisects ∠ 0 so that ∠ 0 ∼= ∠ 0 0 = ∠ 0 Now
∠ 0 ∼= ∠ since these angles are the reflections of each other in line 
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and ∠ ∼= ∠ since these are alternate interior angles of parallels  and←→
 cut by transversal

←→
 Therefore ∠ 0 ∼= ∠ 0 ∼= ∠ .

Exercises

1. Words such as MOM and RADAR that spell the same forward and backward,

are called palindromes.

(a) When reflected in their vertical midlines, MOM remains MOM but the

R’s and D in RADAR appear backward. Find at least five other words

like MOM that are preserved under reflection in their vertical midlines.

(b) When reflected in their horizontal midlines, MOM becomes WOW, but

BOB remains BOB. Find at least five other words like BOB that are

preserved under reflection in their horizontal midlines.

2. What capital letters could be cut out of paper and given a single fold to

produce the figure below?

3. The diagram below shows a par 2 hole on a miniature golf course. Use

a MIRA to construct the path the ball must follow to score a hole-in-one

after banking the ball off

a. wall 

b. wall 

c. walls  and 
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d. walls   and 

4. Two cities, located at points  and  in the diagram below, need to pipe

water from the river, represented by line . City  is 2 miles north of the

river; city  is 10 miles downstream from  and 3 miles north of the river.

The State will build one pumping station along the river.

a. Use a MIRA to locate the point  along the river at which the pumping

station should be built so that the minimum amount of pipe is used to

connect city  to  and city  to .

b. Having located point , prove that if  is any point on  distinct from

 then  +   + .

5. Given two parallel lines  and  in the diagram below, use a MIRA to

construct the path of a ray of light issuing from  and passing through 

after being reflected exactly twice in  and once in 
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6. Suppose lines  and  intersect at the point  and let 0 =  ()  Let

 and  be points on  and 0 that are distinct from  and on the same

side of  Let  and  be the feet of the perpendiculars from  and  to

 Prove that ∠ ∼= ∠ (Thus when a ray of light is reflected by
a flat mirror, the angle of incidence equals the angle of reflection.)

7. A ray of light is reflected by two perpendicular flat mirrors. Prove that

the emerging ray is parallel to the initial incoming ray as indicated in the

diagram below.

8. The Smiths, who range in height from 170 cm to 182 cm, wish to purchase

a flat wall mirror that allows each Smith to view the full length of his or

her image. Use the fact that each Smith’s eyes are 10 cm below the top

of his or her head to determine the minimum length of such a mirror.

9. Prove the Prependicular Bisector Theorem: A point  lies on the perpen-

dicular bisector of  if and only if  is equidistant from  and 

10. Graph the line  with equation  + 2 − 6 = 0 on graph paper. Plot

the point  =
£−5
3

¤
and use a MIRA to locate and mark its image  0

Visually estimate the coordinates
£
0

0
¤
of the image point  0 and record

your estimates. Using formulas (1.6), write down the equations for the

reflection  and use them to compute the coordinates of the image point
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 0 Compare these analytical calculations with your visual estimates of
the coordinates.

11. Fill in the missing entry in each row of the following table:

Equation of  Point   ( )

 = 0
£



¤ ∗

 = 0 ∗ £



¤
 =  ∗ £

2
3

¤
 = 

£



¤ ∗

 = 2
£−2
3

¤ ∗

 = −3 £−4
−1
¤ ∗

Equation of  Point   ( )

 = −3 £



¤ ∗

∗ £
5
3

¤ £−8
3

¤
∗ £

0
3

¤ £−3
0

¤
∗ £−

−
¤ £




¤
 = 2 ∗ £

4
3

¤
2 = 3 + 5

£



¤
12. Horizontal lines  and  in the diagram have respective equations  = 0

and  = 5

a. Use a MIRA to construct the shortest path from point 
£
0
3

¤
to point


£
16
1

¤
that first touches  and then 

b. Determine the coordinates of the point on  and the point on  touched

by the path constructed in part a.

c. Find the length of the path from  to  constructed in part a.

13. For each of the following pairs of points  and  0, determine the equation
of the axis  such that  0 =  ( ) 

a. 
£
1
1

¤
  0

£−1
−1
¤

b. 
£
2
6

¤
  0

£
4
8

¤



18 CHAPTER 1. ISOMETRIES

14. The equation of line  is  = 2 − 5 Find the coordinates of the images
of
£
0
0

¤

£
1
−3
¤

£−2
1

¤
and

£
2
4

¤
under reflection in line 

15. The equation of line  is  − 2 + 3 = 0 Find the coordinates of the

images of
£
0
0

¤

£
4
−1
¤

£−3
5

¤
and

£
3
6

¤
under reflection in line 

16. The equation of line  is 2 + 3 + 4 = 0; the equation of line  is

 − 2 + 3 = 0 Find the equation of the line  =  () 

17. Prove subcases 4a and 4b in the proof of Theorem 28.

18. Let  and  be lines such that  () =  Prove that either  =  or

 ⊥ .

19. Find all values for  and  such that 
³£




¤´
=
£



¤
is an involution.

20. Prove Proposition 33: A reflection is an involution.

21. Prove that an isometry is linear if and only if it fixes the origin. (Hint: Use

vector algebra.)

22. Which reflections are linear? Explain.

1.3 Translations

A translation of the plane is an isometry whose effect is the same as sliding the

plane in a direction parallel to some line for some finite distance.

Definition 36 Let  and  be points. The translation from  to  is the

transformation  : R2 → R2 with the following properties:

1.  =  ( ) 

2. If  = , then  = 

3. If  6=  let  be any point on
←→
 and let  be any point off

←→
; let

0 =  () and let 
0 =  (). Then quadrilaterals ¤0 and

¤00 are parallelograms (see Figure 1.6).
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Figure 1.6.

When  6=  one can think of a translation as a slide in the direction of−−→
: If  is any point and  is the line through  parallel to

←→
 then  ()

is the point on  whose distance from  in the direction of
−−→
 is 

Definition 37 Let  and  be points. The vector PQ is the quantity with

magnitude  and direction
−−→
. If  =

£



¤
and  =

£



¤
, the quantities − 

and − are called the  and  components of PQ and we write PQ =
£
−
−
¤
 The

vector O =
£
0
0

¤
 called the zero vector, has magnitude 0 and arbitrary direction.

Graphically, we represent a vector PQ as an arrow in the plane with initial

point  and terminal point  Thus one computes the components of PQ by

subtracting initial coordinates from terminal coordinates. If  =
£
0
0

¤
and  is

any point, the vector OP is said to be in standard position. Since a vector is

uniquely determined by its components, we identify OP =
£



¤
with the point

 =
£



¤


Definition 38 Let PQ =
£



¤
and RS =

£



¤
 The vector sum of PQ and RS is

PQ+RS =

∙
+ 

 + 

¸


To picture a vector sum, translate PQ so that its terminal point coincides

with the initial point ofRS Then PQ andRS determine a parallelogram whose

diagonal terminating at  represents PQ+RS (see Figure 1.8).

Figure 1.8.
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Definition 39 Let  and  be points. The translation by vector PQ is the

transformation PQ : R2→ R2 defined by

PQ () = OR+PQ

The vector PQ is called the vector of PQ

We emphasize that the the vectorOR+PQ in Definition 39 is to be thought

of in standard position and is identified with its ternminal point in the plane.

Definitions 36 and 39 give two ways to define the same transformation; each

definition has advantages and disadvantages.

Theorem 40 For all points  and   = PQ

Proof. If  = , then  =  = PQ. So assume that  6=  If  is any

point on
←→
 and  is any point off

←→
 let 0 =  () and 0 =  () 

Then ¤0 and ¤00 are parallelograms by definition, in which case

AA0 = BB0= PQ Therefore, PQ () = OA+PQ = OA+AA0= OA0=0 =
 () and PQ () = OB+PQ = OB+BB0 = OB0 = 0 =  () 

Corollary 41 If PQ() =  then PQ = RS

Proof. If  =  then PQ =  and  = ; hence RS =  If  6=  then

PQ () =  =  () by Theorem 40. If  is off
←→
 then ¤ is a

parallelogram by definition of  so that PQ = RS and PQ = RS If  is

on
←→
 and  is off

←→
 let 0 =  () Then ¤0 and ¤0 are

parallelograms by definition of  so that PQ = BB0= RS and PQ = RS

Corollary 41 tells us that a translation is uniquely determined by any point

and its image. Consequently, we shall often refer to a general translation 

without specific reference to a point  and its image  or to a vector PQ

When we need the vector of   for example, we simply evaluate  at any point£



¤
and obtain the image point

£
0

0
¤
; the desired components are 0− and 0−

Furthermore, given PQ =
£



¤
=
£
0−
0−

¤
 we immediately obtain the equations of

the translation by vector PQ:

Proposition 42 Let PQ =
£



¤
 The equations for the translation PQ are

0 = + 

0 =  + 
 (1.7)

Example 43 Let  =
£
4
5

¤
and  =

£−1
3

¤
 Then PQ =

£−5
−2
¤
and the equations

for PQ are

0 = − 5
0 =  − 2 



1.3. TRANSLATIONS 21

In particular, PQ

³£
7
−5
¤´
=
£
2
−7
¤


Theorem 44 Translations are isometries.

Proof. Let  be a translation. Given points  and  let  0 =  ( )

and 0 =  ()  Then PP0 = QQ0 since  = PP0 = QQ0 by Corollary 41.

Therefore PQ = PP0+P0Q = QQ0+P0Q= P0Q+QQ0 = P0Q0 and it follows
that  =  00

Although function composition is not commutative in general, the composi-

tion of translations is commutative. Intuitively, this says that you will arrive at

the same destination either by a move through directed distance 1 parallel to

line 1 followed by a move through directed distance 2 parallel to line 2 or by

a move through directed distance 2 parallel to 2 followed by a move through

directed distance 1 parallel to 1 The paths to your destination follow the two

routes along the edges a parallelogram from one vertex to its diagonal opposite.

This fact is part (2) of the next proposition.

Proposition 45 Let    and  be arbitrary points.

1. The composition of translations is a translation. In fact,

RS ◦ PQ = PQ+RS

2. A composition of translations commutes, i.e.,

RS ◦ PQ = PQ ◦ RS

3. The inverse of a translation is a translation. In fact,

−1PQ = −PQ

Proof. (1) Let  be any point, and identify  with the vector OA; then

(RS ◦ PQ) () = RS(PQ (OA)) = RS (OA+PQ) = (OA+PQ)+RS =

OA+(PQ+RS) = PQ+RS ()  Therefore RS ◦ PQ = PQ+RS

(2) By part (1) and the fact that vector addition commutes, we have PQ ◦
RS = PQ+RS = RS+PQ = RS ◦ PQ
(3) By parts (1) and (2), PQ ◦ −PQ = −PQ ◦ PQ = PQ−PQ =  so that

−1PQ = −PQ by Proposition 12.

Definition 46 A collineation  is a dilatation if and only if ()k for every
line  (a line is parallel to itself).

Theorem 47 Translations are dilatations.
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Proof. Let  be a translation and let  be a line. Let  and  be distinct

points on line ; let 0 =  () and 0 =  (). Then  () =
←−→
00 since  is a

collineation by Proposition 26, part 1, and  = AA0 = BB0 by Corollary 41. If

  0 and 0 are collinear, then
←→
 =

←−→
00 so that

←→
 k←−→00. If   0

and 0 are non-collinear, then  lies off
←−→
0 and ¤00 is a parallelogram

by definition of translation, and it follows that
←→
 k←−→00 (see Figure 1.9).

Figure 1.9.

Definition 48 A transformation  fixes a set  if and only if () =  A

transformation  fixes a set  pointwise if and only if  () =  for each point

 ∈ 

Example 49 If  is a line, the reflection  fixes  pointwise by definition.

Theorem 50 Let  and  be distinct points. The translation PQ is fixed

point free, but fixes every line parallel to
←→
.

Proof. Let  be a line parallel to and distinct from
←→
 let  be a point

on  and let 0 = PQ ()  Then  and 0 are distinct. If  6= ←→ then
¤0 is a parallelogram, by definition of translation, and

←→
k←−→0 There-

fore PQ () = 0 so that PQ () ⊆  Since  is an isometry, it is a collineation

by Proposition 26, part 1, and PQ () =  The case  =
←→
 is left as an exercise

for the reader.

Since a reflection has infinitely many fixed points and a non-identity trans-

lation has none, we have:

Corollary 51 A non-identity translation is not a reflection.

Exercises



1.3. TRANSLATIONS 23

1. A river with parallel banks  and  is to be spanned by a bridge at right

angles to  and .

a. Using an overhead transparency to perform a translation and a MIRA,

locate the bridge that minimizes the distance from city  to city .

b. Let  denote the bridge at right angles to  and  constructed in part

a. Prove that if  is any other bridge spanning river  distinct from and

parallel to  then + +    + +.

2. Let  be the translation such that 
¡£−1

3

¤¢
=
£
5
2

¤


a. Find the vector of  

b. Find the equations of  

c. Find 
¡£
0
0

¤¢
 
³£

3
−7
¤´

 and 
³£−5
−2
¤´
.

d. Find  and  such that 
³£




¤´
=
£
0
0

¤


3. Let  be the translation such that 
¡£
4
6

¤¢
=
£
7
10

¤


a. Find the vector of  

b. Find the equations of  

c. Find 
¡£
0
0

¤¢
 
¡£
1
2

¤¢
 and 

³£−3
−4
¤´
.

d. Find  and  such that 
³£




¤´
=
£
0
0

¤


4. Let  =
£
4
−1
¤
and  =

£−3
5

¤
.

a. Find the vector of 
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b. Find the equations of 

c. Find 
¡£
3
6

¤¢
 

¡£
1
2

¤¢
 and 

³£−3
−4
¤´
.

d. Let  be the line with equation 2 + 3 + 4 = 0 Find the equation of

the line 0 =  () 

5. Complete the proof of Theorem 50: If  and  are distinct points and

 =
←→
, then PQ () = 

6. Let  and  be points. Prove that −1AB = BA

7. Let  and  be the lines with respective equations  +  − 2 = 0 and

 +  + 8 = 0

a. Compose the equations of  and  and show that the composition

 ◦  is a translation  .

b. Compare the norm of the vector of  with the distance between  and

.

8. Let  =
£
1
2

¤
and  =

£
1
2

¤
be distinct points and let  :  +  +  = 0

with 2 + 2  0 be a line parallel to
←→
 Prove that:

a.  (1 − 1) +  (2 − 2) = 0

b.  ◦ PQ = PQ ◦ 

9. Is a non-identity translation linear? Explain.

1.4 Halfturns

In this section we consider halfturns, which are 180◦ rotations of the plane about
some point. Halfturns play an important role in our theoretical discussion to

follow.

Definition 52 Let  be a point. The halfturn with center  is the transforma-

tion  : R
2 → R2 that satisfies the following conditions:

1.  () = .

2. If  is a point distinct from  and  0 =  ( )  then  is the midpoint

of  0
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Axiom (1) says that the halfturn  fixes its center . We often refer to 
as the halfturn about 

Figure 1.10: A halfturn about 

Remark 53 Some authors refer to the halfturn about point  as “the reflection

in point ” In this course we use the “halfturn” terminology exclusively.

Theorem 54 Halfturns are isometries.

Proof. Let  be a halfturn about a point  let  and  be distinct points,

let  0 = ( ) and let 
0 = () If  =  then 0 =  by Definition 52,

Axiom (1), and  =  0 by Axiom (2). Hence  =  =  0 =  00 and
similarly for  =  If  is distinct from both  and  then  =  0 and

 = 0 by Axiom (2). If   and  are non-collinear, ∠ ∼= ∠ 00,
since vertical angles are congruent, and it follows that 4 ∼= 4 00 by
 (see Figure 1.11). Therefore  =  00 since  The case with 
 and  collinear is left as an exercise.

Figure 1.11.

We now derive the equations of a halfturn about the point  =
£



¤
 Let

 =
£



¤
and  0 =

£
0

0
¤
 where  0 = ( ) If  6=  then by definition  is
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the midpoint  and  0 so that

 =
+ 0

2
and  =

 + 0

2


These equations simplify to

0 = 2− 

0 = 2− 
 (1.8)

On the other hand, evaluating the equations in (1.8) at the point  =
£



¤
gives

0 = 

0 = 


Thus the center  is fixed by the transformation whose equations are given in

(1.8). This proves:

Theorem 55 Let  =
£



¤
be a point in the plane. The equations of the halfturn

 are given by

0 = 2− 

0 = 2− 


Example 56 Let  denote the origin; the equations for the halfturn about the

origin  are

0 = −
0 = − 

Recall that a function  : R → R is odd if and only if (−) = −() An
example of such a function is () = sin() Let  be odd and consider a point

 =
£


()

¤
on the graph of  The image of  under the halfturn  is



µ∙


 ()

¸¶
=

∙ −
− ()

¸
=

∙ −
 (−)

¸


which is also a point on the graph of  Thus  fixes the graph of 

Proposition 57 A line  is fixed by the halfturn  if and only if  lies on 

Proof. Let  be a halfturn and let  be a line. If  lies on  consider a

point  on  distinct from . Let  0 = ( ); by definition,  is the midpoint

of  0 Hence  0 is on  and  is fixed by  Conversely, suppose that  lies

off  and consider any point  on  Then  0 = ( ) lies off  since otherwise

the midpoint of  0, which is  would lie on  Therefore  is not fixed by  

Proposition 58 A halfturn is
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1. an involution.

2. a dilatation.

Proof. The proofs are left as exercises for the reader.

Exercises

1. People in distress on a deserted island sometimes write SOS in the sand.

(a) Why is this signal particularly effective when viewed from searching

aircraft?

(b) The word SWIMS, like SOS, reads the same after performing a halfturn

about its centroid. Find at least five other words that are preserved

under a halfturn about their centroids.

2. Try it! Plot the graph of  = sin() on graph paper, pierce the graph

paper at the origin with your compass point and push the compass point

into your writing surface. This provides a point around which you can

rotate your graph paper. Now physically rotate your graph paper 180◦

and observe that the graph of  = sin() is fixed by  in the sense defined

above.

3. Find the coordinates for the center of the halfturn whose equations are

0 = −+ 3 and 0 = − − 8

4. Let  =
£
2
3

¤
; let  be the line with equation 5 −  + 7 = 0

a. Find the equations of  

b. Find the image of
£
1
2

¤
and

£−2
5

¤
under  

c. Find the equation of the line 0 =  () On graph paper, plot point 

and draw lines  and 0

5. Repeat Exercise 4 with  =
£−3
2

¤


6.  =
£
3
−2
¤
and  =

£−5
7

¤
 Find the equations of the composition  ◦ 

and inspect them carefully. These are the equations of an isometry we

discussed earlier in the course. Can you identify which?

7. In the diagram below, circles  and  intersect at points  and  Use

a MIRA to find a line through  distinct from
←→
 that intersects circles

 and  in chords of equal length.
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Q

P

BA

8. Let  =
£



¤
and  =

£



¤
be distinct points. Find the equations of ◦

and prove that the composition ◦ is a translation  . Find the vector
of  

9. For any point  prove that −1 =  

10. Complete the proof of Theorem 54: If   and  are distinct and

collinear,  0 =  ( ) and 0 =  ()  then  =  00

11. Let  and  be the lines with respective equations  +  − 2 = 0 and

 −  + 8 = 0

a. Compose the equations of  and  and show that the composition

 ◦  is a halfturn  .

b. Find the center  of this halfturn and the coordinates of the point

 =  ∩ What do you observe?

12. Prove that  ◦  =  ◦  if and only if  = 

13. Prove Proposition 58, part 1: A halfturn is an involution.

14. Prove Proposition 58, part 2: A halfturn is a dilatation.

15. Which halfturns are linear? Explain.

1.5 General Rotations

In this section we define general rotations, derive their equations, and prove some

fundamental properties. Recall that two real numbers Θ and Φ are congruent

mod360 if and only if Θ − Φ = 360 for some  ∈ Z, in which case we write
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Θ ≡ Φ The set Θ◦ = {Θ+ 360 |  ∈ Z} is called the congruence class of Θ
and we define − (Θ◦) = (−Θ)◦ and Θ◦ + Φ◦ = (Θ+Φ)

◦
 Each congruence

class contains exactly one real number in the interval (−180 180]  For example,
370◦ ∩ (−180 180] = 10 and −370◦ ∩ (−180 180] = −10 When Θ ≡ Φ their
congruence classes Θ◦ = Φ◦ are equal as sets. For example, 300◦ = (−60)◦ =
− (60◦)  Recall that ∠ ∈ (−180 180] 

Definition 59 Let  be a point and let Θ ∈ R. The rotation about  of Θ◦ is
the transformation Θ : R

2 → R2 such that

1. Θ() = .

2. If  6=  and  0 = Θ( ) then  0 =  and ∠ 0 ≡ Θ

Figure 1.12.

Of course, Θ1 = Θ2 if and only if Θ1 ≡ Θ2

Example 60 Consider a halfturn   Since  () =  and  is the midpoint

of a point  and its image  0 we have  =  0 and ∠ 0 = 180 Thus
 is a rotation about  of 180◦

Theorem 61 A rotation is an isometry.

Proof. Let Θ be a rotation. Let   and  be points with  and 

distinct; let  0 = Θ( ) and 0 = Θ() If  =  then by definition,

 =  = 0 =  00 and similarly for  =  So assume that   and 

are distinct. If   and  are non-collinear, then 4 ∼= 4 00 by 
and  =  00 since  If   and  are collinear with  −  −

then  = − = 0− 0 =  00 since  =  0 and  = 0 by
definition, and similarly for −− But if  −− then  0−−0since
∠ 0 = ∠0 ≡ Θ Therefore  =  +  =  0 + 0 =  00

Before we derive the equations of a general rotation, we consider the special

case of rotations Θ about the origin. Since Θ is an isometry that fixes
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 it is linear by Proposition 26, part 5. Let 1 =
£
1
0

¤
and 2 =

£
0
1

¤
; let

01 = Θ(1) and 02 = Θ (2)  Then

Θ

µ∙




¸¶
= Θ

µ


∙
1

0

¸
+ 

∙
0

1

¸¶
= Θ (1) + Θ (2)

= 01 + 02

and Θ is completely determined by its action on1 and2. Since∠101 =
Θ we have

01 =
∙
cosΘ

sinΘ

¸


Furthermore, since∠12 = 90 and∠202 = Θ we have∠102 =
Θ+ 90 and

02 = Θ+90 (1) =

∙
cos (Θ+ 90)

sin (Θ+ 90)

¸
=

∙− sinΘ
cosΘ

¸


Consequently,∙
0

0

¸
= 01 + 0

2 =

∙
 cosΘ

 sinΘ

¸
+

∙− sinΘ
 cosΘ

¸
=

∙
 cosΘ−  sinΘ

 sinΘ+  cosΘ

¸


and we have proved:

Theorem 62 Let Θ ∈ R. The equations for Θ are

0 =  cosΘ−  sinΘ

0 =  sinΘ+  cosΘ


Now think of a general rotation Θ about  =
£



¤
of Θ◦ as the following

sequence of three operations:

1. Translate by vector CO

2. Perform a rotation about the origin  of Θ◦

3. Translate by vector OC

This is an example of a “conjugation”; we shall return to this example in Chapter

3.
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Figure 1.13.

Then

Θ = OC ◦ Θ ◦ CO
implies ∙

0

0

¸
=
¡
OC ◦ Θ ◦ CO

¢µ∙


¸¶
= OC

µ
Θ

µ∙
− 

 − 

¸¶¶
= OC

µ∙
(− ) cosΘ− ( − ) sinΘ

(− ) sinΘ+ ( − ) cosΘ

¸¶
=

∙
(− ) cosΘ− ( − ) sinΘ+ 

(− ) sinΘ+ ( − ) cosΘ+ 

¸


We have proved:

Theorem 63 Let  =
£



¤
and let Θ ∈ R. The equations of Θ are

0 = (− ) cosΘ− ( − ) sinΘ+ 

0 = (− ) sinΘ+ ( − ) cosΘ+ 

The proof of our next proposition is similar to the proof of Proposition 45

and is left an exercise for the reader:

Proposition 64 Let  be a point and let ΘΦ ∈ R

1. A composition of rotations about  is a rotation. In fact,

Θ ◦ Φ = Θ+Φ

2. A composition of rotations about  commutes, i.e.,

Θ ◦ Φ = Φ ◦ Θ



32 CHAPTER 1. ISOMETRIES

3. The inverse of a rotation about  is a rotation about . In fact,

−1Θ = −Θ

Proposition 65 A non-identity rotation Θ fixes every circle with center 

and has exactly one fixed point, namely .

Proof. That Θ () =  follows by definition. From the equations of a

rotation it is evident that Θ =  (the identity) if and only if Θ ≡ 0 so Θ◦ 6= 0◦
by assumption. Let  be any point distinct from  and let and  0 = Θ( );

then  6=  0 since ∠ 0 ∈ 0◦ Therefore  is the unique point fixed by

Θ Furthermore, let  be any point on  and let 
0 = Θ(). Then by

definition  =  = 0 and 0 is on   Hence Θ ( ) ⊆   Since

Θ is an isometry, Θ ( ) =  by Proposition 26, part 4.

Since a reflection has infinitely many fixed points, a non-identity rotation

has exactly one, and a non-identity translation has none, we have:

Corollary 66 A non-identity rotation is neither a reflection nor a translation.

Corollary 67 Involutory rotations are halfturns.

Proof. An involutory rotation Θ is a non-identity rotation such that

2Θ =  = 0 By Proposition 64, 
2
Θ = 2Θ so that 2Θ = 0 and

2Θ ≡ 0 Hence there exists some  ∈ Z such that 2Θ = 360 or consequently
Θ = 180 Now  cannot be even since Θ 6=  implies that Θ is not a multiple

of 360. Therefore  = 2+1 is odd and Θ = 180+360 It follows that Θ ≡ 180
and Θ =  as claimed.

Exercises

1. Find the coordinates of the point 30
¡£
3
6

¤¢
.

2. Let  =
£−3
5

¤
 Find the coordinates of the point 45

¡£
3
6

¤¢


3. Let  be the line with equation 2 + 3 + 4 = 0

a. Find the equation of the line 30 () 

b. Let  =
£−3
5

¤
 Find the equation of the line 45 () 

4. Let  be a point and let ΘΦ ∈ R Prove that Θ ◦ Φ = Θ+Φ

5. Let  be a point and let ΘΦ ∈ R Prove that Θ ◦ Φ = Φ ◦ Θ

6. Let  be a point and let Θ ∈ R Prove that −1Θ = −Θ



Chapter 2

Compositions of Isometries

As we observed in Exercise 3 of Section 1.1, the composition of isometries is an

isometry. So it is natural to study the properties possessed by a composition of

isometries. In this chapter we show that the composition of two reflections is

a rotation or a translation, and the composition of three reflections in distinct

lines is either a reflection or a “glide reflection.”

2.1 Compositions of Halfturns

In this section we observe that the composition of two halfturns is a translation,

and the composition of three halfturns is another halfturn.

Theorem 68 The composition of two halfturns is a translation. In fact, given

any two points  and 

 ◦  = 2AB

Proof. Let  be a point, let  =  ( ) and let 
0 = ( ◦ ) ( )  Then

by definition,  is the midpoint of  and  is the midpoint of  0. Thus
PP0= PQ+QP0 = (PA+AQ)+

¡
QB+BP0

¢
= 2 (AQ+QB)= 2AB There-

fore  0 = OP0 = OP+PP0 = OP+2AB =2AB ( ) 

When  and  are distinct, Theorem 68 tell us that  ◦  translates a

distance 2 in the direction from  to  (see Figure 2.1).

33



34 CHAPTER 2. COMPOSITIONS OF ISOMETRIES

Figure 2.1: A composition of two halfturns

Theorem 69 The composition of three halfturns is a halfturn. In fact, given

any three points   and 

 ◦  ◦  =  (2.1)

where  is the unique point such that AB = DC

Proof. Let  =
£
1
2

¤
  =

£
1
2

¤
  =

£
1
2

¤
and  =

£
1
2

¤
 Then AB = DC

implies
£
1−1
2−2

¤
=
£
1−1
2−2

¤
 and by equating components,  =

£
1−1+1
2−2+2

¤
 By

Theorem 68,  ◦  = 2AB; thus

( ◦ )
µ∙





¸¶
=

∙
+ 2(1 − 1)

 + 2(2 − 2)

¸
and

( ◦  ◦ )
µ∙





¸¶
=

∙
21 − (+ 2(1 − 1))

22 − ( + 2(2 − 2))

¸
=

∙
2(1 − 1 + 1)− 

2(2 − 2 + 2)− 

¸


which is a halfturn about .

Figure 2.2.
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Note that if   and  are non-collinear, ¤ is a parallelogram (see

Figure 2.2). This fact gives us a simple way to construct the center point 

Halfturns do not commute in general. In fact,  ◦  =  ◦  if and only
if  =  (cf. Exercise 1.4.12). Thus the only halfturn that commutes with 
is itself. On the other hand, the fact that the product of three halfturns is a

halfturn implies:

Proposition 70 For any three points   and 

 ◦  ◦  =  ◦  ◦  

Proof. By Theorem 69, there is a point  such that  ◦ ◦ =  =

−1 = ( ◦  ◦ )−1 = −1 ◦ −1 ◦ −1 =  ◦  ◦  

Exercises

1. In the figure below, sketch points  such that

a.  ◦  ◦  = 

b.  ◦ AC = 

c. BC ◦ AB ◦ EA () = 

2. Let   and  be distinct points and let  0 = AB ( ). Prove that

AB ◦  ◦ BA =  0  (Hint: Use Theorem 68 to replace AB and BA
with the appropriate compositions of halfturns.)

3. Use Proposition 70 to prove that any two translations commute.

4. Let  be a translation; let  be a point. Let  be the midpoint of  and

 () 

(a) Prove that  ◦  = 

(b) Prove that  ◦  =  where  = −1 () 
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5. If coin  in the figure below is rolled around coin  until coin  is directly

under coin  will the head on coin  right-side up or up-side down? Ex-

plain.

6. Given three points   and  construct the point  such that AB =

 ◦  

7. Given three points   and  construct the point  such that AB =

 ◦  

8. Given three points   and  construct the point  such that AB =

 ◦  

9. Given three points   and  construct the point  such that AB =

 ◦  

2.2 Compositions of Two Reflections

In this section we prove the Three Points Theorem and apply it to characterize

rotations and translations in a new and important way. We shall observe that

the composition of two reflections in intersecting lines is a rotation and the

composition of two reflections in parallel lines is a translation.

Theorem 71 An isometry with two distinct fixed points  and  fixes
←→


pointwise.

Proof. Let  and  be distinct fixed points of an isometry  let  be

any point on
←→
 distinct from  and  and let 0 =  (). Then 0 ∈ 

since  = 0 and 0 ∈  since  = 0 (see Figure 2.3). If 0 6= 

then
←→
 is the prependicular bisector of 0, in which case   and  are

non-collinear. Since this is a contradiction, 0 = 
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Figure 2.3.

Theorem 72 An isometry with three non-collinear fixed points is the identity.

Proof. Let   and  be non-collinear points of an isometry  Then 

fixes
←→


←→
 and

←→
 pointwise by Theorem 71. Let  be any point off of

these three lines and let  be any point in the interior of 4 and distinct

from  (see Figure 2.4). Then
←−→
 intersects 4 in two distinct points 

and  (one possibly a vertex). Since  fixes the points  and  it fixes
←−→


pointwise by Theorem 71. Thus  fixes  and  =  as claimed.

Figure 2.4.

Theorem 73 (Three Points Theorem) Two isometries that agree on three

non-collinear points are equal.

Proof. Suppose  and  are isometries and   and  are non-collinear

points such that

( ) = ( ) () = () and () = () (2.2)
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Apply −1 to both sides of each equation in (5.3) and obtain

 = (−1 ◦ )( )  = (−1 ◦ )() and  = (−1 ◦ )()

Thus −1◦ is an isometry that fixes three non-collinear points. Hence −1◦ =
 by Theorem 72, and applying  to both sides gives  = 

Definition 74 Let  and  be distinct lines intersecting at  Let  and 

be points distinct from  on  and  respectively, and let 0 =  ()  Then

∠ and ∠0 are the angles from  to .

Note that ∠ and ∠0 are supplementary, i.e., their union is a straight

angle, and ∠  0 if and only if ∠0  0 Thus ∠ −
∠0 = 180 when ∠  0 and ∠ −∠0 = −180 when
∠  0 In either case, 2∠ − 2∠0 = ±360 and the double
angles from  to  have congruent measures.

Theorem 75 Given distinct lines  and  intersecting at  let Θ be the mea-

sure of an angle from  to  Then

 ◦  = 2Θ

Proof. First observe that

( ◦ ) () = (()) = () =  = 2Θ() (2.3)

Let  be a point on  distinct from  and consider the circle  Let  be

the point in  ∩  such that ∠ = Θ and let 0 = (); then  is

the perpendicular bisector of 0 by definition of  so that  = 0 and
∠0 = 2Θ Therefore 0 = 2Θ() by definition of 2Θ and

( ◦ ) () = (()) = () = 0 = 2Θ() (2.4)

Let  = (); then  is the perpendicular bisector of  by the definition

of  so that  =  and ∠ = 2Θ Therefore  = 2Θ() by

definition of 2Θ and

( ◦ ) () = (()) = () = = 2Θ() (2.5)

By equations (2.3), (2.4), and (2.5), the isometries  ◦  and 2Θ agree on

non-collinear points   and  Therefore  ◦  = 2Θ by Theorem 73, as

claimed.
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Figure 2.5.

In fact, there is the following equivalence:

Theorem 76 A non-identity isometry  is a rotation if and only if  is the

product of two reflections in distinct intersecting lines.

Proof. The implication ⇐ was proved in Theorem 75. For the converse,

given 2Θ let Θ
0 ∈ (−180 180] such that Θ0 ≡ Θ Let  be any line through 

and let  be the unique line through  such that the measure of an angle from

 to  is Θ (see Figure 2.6). Then 2Θ = 2Θ0 =  ◦ by Theorem 75.

Figure 2.6.
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Example 77 Consider the lines  :  −  = 0 and  :  = 0. The equations

for reflections in  and  are

 :

½
0 = 

0 = 
and  :

½
0 = −
0 = 

and the equations for the composition  ◦  are

 ◦  :
½

0 = −
0 = 

Note that the measure of the positive angle from  to  is 45 and the equations

90 :

½
0 =  cos 90−  sin 90 = −
0 =  sin 90 +  cos 90 = 

agree with those of equations of  ◦. Furthermore, −270 = 2 (−135) is twice
the measure of the negative angle from  to  and of course, 90 ≡ −270

Corollary 78 Let  and  be perpendicular lines intersecting at  Then

 =  ◦  =  ◦ 

Corollary 79 Let  and  be distinct parallel lines with common perpendicular

 Let  =  ∩  and let  =  ∩  Then

 ◦  = 2LM

Proof. Refer to Figure 2.7. By Corollary 78 and Theorem 68, we have

 ◦  = ( ◦ ) ◦ ( ◦ ) =  ◦  = 2LM (2.6)

Figure 2.7.

In fact, we have the following equivalence:
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Theorem 80 A non-identity isometry  is a translation if and only if  is a

product of two reflections in distinct parallel lines.

Proof. Implication ⇐ follows from Corollary 79. Conversely, given a non-

identity translation  and a point  let  =  () ; then  = LP by Corollary

41. Let  be the midpoint of  and  let  =
←→
 and let  and  be the

lines perpendicular to  at  and  respectively. Then LP = LM so that

 = LP = 2LM =  ◦  by Corollary 79.
Theorem 81 If lines   and  are concurrent at  there exist unique lines

 and  passing through  such that

 ◦  =  ◦  =  ◦ 
Proof. If  =  set  =  =  and the conclusion follows trivially. If

 6=  let Θ be the measure of an angle from  to ; let  and  be the unique

lines such that an angle from  to  and an angle from  to  have measure Θ

Then 2Θ =  ◦  =  ◦  =  ◦  by Theorem 75 (see Figure 2.8).

Figure 2.8.

Note that Theorem 81 does not require line  to be distinct from lines  and

 If  =  for example, then  =  Also, if Θ =  ◦  and Θ ∈ 0◦ then
 =  ∩ By Theorem 81, each line  passing through  determines unique

lines  and  such that  ◦  =  ◦  =  ◦  Since Θ is congruent to
twice the measure of an angle from  to  and an angle from  to  we have:

Corollary 82 Let  be a point, let Θ ∈ 0◦ and let  be any line through 

Let  and  be the unique lines passing through  such that an angle from  to

 and an angle from  to  is congruent to 1
2
Θ Then

Θ =  ◦  =  ◦ 
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We know from Proposition 57 that a halfturn  fixes a line  if and only if

 is on  Which lines are fixed by a general rotation?

Theorem 83 Non-identity rotations that fix a line are halfturns.

Proof. If Θ ∈ 0◦ and  is a line such that Θ() =  let  be the line

through  perpendicular to  By Corollary 82, there is a line  through  such

that Θ =  ◦  (see Figure 2.9). Since  ⊥  we have

 = Θ() = ( ◦ ) () = (()) = ()

Thus  fixes  in which case  =  or  ⊥  by Exercise 18 in Section 1.2. But

if  ⊥  then  k  since  is a common perpendicular. But  and  intersect

at  Therefore  =  and  ⊥  so that 2Θ =  ◦  =  by Corollary

78.

Figure 2.9. Θ0 ≡ Θ

There is the following analogue of Theorem 81 for translations:

Theorem 84 Let   and  be parallel lines. There exist unique lines  and

 parallel to  such that

 ◦  =  ◦  =  ◦ 

Proof. If  =  set  =  =  and the conclusion follows trivially. If

 6=  choose a common perpendicular  and let  =  ∩   =  ∩  and
 =  ∩  By Theorem 69, there exist unique points  and  on  such that

 =  ◦ ◦  and  =  ◦  ◦  Left-multiplying both side of the
first equation by  gives  ◦ =  ◦; and right-multiplying both sides
of the second equation by  gives  ◦  =  ◦  Then by Theorem 68

we have

2LM =  ◦  =  ◦  = 2PN

=  ◦  =  ◦  = 2NQ
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Let  and  be the lines perpendicular to  at  and , respectively (see Figure

2.10). Then by Corollary 79,

 ◦  = 2LM = 2PN =  ◦ 
= 2LM = 2NQ =  ◦ 

Figure 2.10.

Note that Theorem 84 does not require line  to be distinct from  and 

If  =  for example, then  =  Now if PQ =  ◦  then  k  If  is

also parallel to , Theorem 84 tells us that  determines unique lines  and 

parallel to  such that  ◦  =  ◦  =  ◦  Since PQ = 2PN = 2NQ

we have:

Corollary 85 Let  and  be distinct points and let  be a line perpendicular

to
←→
 Then there exist unique lines  and  parallel to  such that

PQ =  ◦  =  ◦ 

Note that the identity  = PP = 0 = ◦ for all  , and  Therefore

Theorem 86 A product of two reflections is either a translation or a rotation;

only the identity is both a translation and a rotation.

Exercises

1. Consider the rotation Θ =  ◦  where  :  = 3 and  :  = 

(a) Find the -coordinates of the center  and the rotation angle Θ0 ∈
(−180 180] 

(b) Find the equations of Θ

(c) Compare Θ0 with the (positive and negative) measures of the angles
from  to .



44 CHAPTER 2. COMPOSITIONS OF ISOMETRIES

(d) Compose the equations of  with the equations of  and compare

your result with the equations of Θ

2. Consider the rotation Θ =  ◦  where  :  +  − 2 = 0 and

 :  = 3

(a) Find the -coordinates of the center  and the rotation angle Θ0 ∈
(−180 180] 

(b) Find the equations of Θ

(c) Compare Θ0 with the (positive and negative) measures of the angles
from  to .

(d) Compose the equations of  with the equations of  and compare

your result with the equations of Θ

3. Consider the rotation Θ =  ◦  where  :  =  and  :  =

− + 4

(a) Find the -coordinates of the center  and the rotation angle Θ0 ∈
(−180 180] 

(b) Find the equations of Θ

(c) Compare Θ0 with the (positive and negative) measures of the angles
from  to .

(d) Compose the equations of  with the equations of  and compare

your result with the equations of Θ

4. Find the equations of lines  and  such that 90 =  ◦ 

5. Let  =
£
3
4

¤
 Find equations of lines  and  such that 60 =  ◦ 

6. Lines  and  have respective equations  = 3 and  = 5 Find the

equations of the translation  ◦ 

7. Lines  and  have respective equations  =  and  =  +4 Find the

equations of the translation  ◦ 

8. The translation  has vector
£
4
−3
¤
 Find the equations of lines  and 

such that  =  ◦ 

9. The translation  has equations 0 = +6 and 0 = − 3 Find equations
of lines  and  such that  =  ◦ 
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10. Lines   and  have respective equations  = 0  = 2 and  = 0

a. Find the equation of line  such that  ◦  =  ◦ 
b. Find the equation of line  such that  ◦  =  ◦ 

11. Lines   and  have respective equations  = 3  = 5 and  = 9

a. Find the equation of line  such that  ◦  =  ◦ 
b. Find the equation of line  such that  ◦  =  ◦ 

12. Construct the following in the figure below:

a. Line  such that  ◦  =  ◦ 
b. Line  such that  ◦  =  ◦ 
c. The fixed point of  ◦ 

13. Given distinct points  and  construct the point  such that PQ ◦
45 = 45.

14. Given distinct points   and  construct the point  such that QR ◦
120 = 120.

15. Let  be a point and let  and  be lines. Prove that:

a. There exist lines  and  with  on  such that  ◦  =  ◦ 
b. There exist lines  and  with  on  such that  ◦  =  ◦ 

16. Let  and  be distinct points and let  be a line parallel to
←→
 Apply

Theorem 68 and Corollary 78 to prove that  ◦ PQ = PQ ◦  (cf.
Exercise 1.3.8).
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17. Let  be a point on line  and let Θ ∈ R Prove that ◦Θ = −Θ◦

18. Let ¤ ∼= ¤ be a pair of congruent rectangles. Describe how

to find a rotation Θ such that Θ (¤) = ¤

19. Prove that in any non-degenerate triangle, the perpendicular bisectors of

the sides are concurrent at some point  equidistant from the vertices.

Thus every triangle has a circumscribed circle, called the circumcircle.

The center  of the circumcircle is called the circumcenter of the triangle.

2.3 The Angle Addition Theorem

A technique similar to the one used in the proof of Theorem 84 to transform a

product of halfturns into a product of reflections in parallel lines can be applied

to a pair of general rotations as in the proof of our next important theorem:

Theorem 87 (The Angle Addition Theorem, part I) Let  and  be

points, and let Θ and Φ be real numbers such that Θ + Φ ∈ 0◦ Then there
is a unique point  such that

Φ ◦ Θ = Θ+Φ

Proof. If  =  then Φ ◦ Θ = Φ ◦ Θ = Θ+Φ by Proposition

64, and the conclusion holds with  = . So assume that  6=  and let

Θ0Φ0 ∈ (−180 180] such that Θ0 ≡ Θ and Φ0 ≡ Φ; then Θ = Θ0 and

Φ = Φ0  If Θ
0 = 0 then Θ0 =  and the conclusion holds for  = ;

similarly, if Φ0 = 0 the conclusion holds with  =  So assume Θ0Φ0 6= 0 and
let  =

←→
 By Corollary 82, there exist unique lines  and  passing through

 and  respectively, such that Φ0 =  ◦ and Θ0 =  ◦ Consider
the angle from  to  measuring 1

2
Θ0 and the angle from  to  measuring 1

2
Φ0

By assumption, −360  Θ0+Φ0  360 so that −180  1
2
(Θ0 +Φ0)  180 Then

 and  are not parallel, otherwise  is a transversal and an angle from  to

 has measure 1
2
Θ0 in which case 1

2
Θ0 + 1

2
Φ0 = 180 which is a contradiction.

Therefore  and  intersect at some point  and we may consider 4 Now

Θ0Φ0 ∈ (−180 0) ∪ (0 180] implies 1
2
Θ0 1

2
Φ0 ∈ (−90 0) ∪ (0 90]  I claim some

angle from  to  has measure 1
2
(Θ0 +Φ0). We consider four cases.

Case 1: Θ0 1
2
Φ0 ∈ (0 90]. Then ∠ = 1

2
Θ0 and ∠ = 1

2
Φ0 (see

Figure 2.11). By the Exterior Angle Theorem, there is an exterior angle from 

to  measuring 1
2
(Θ0 +Φ0).
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Figure 2.11.

Case 2: 1
2
Θ0 ∈ (−90 0) and 1

2
Φ0 ∈ (0 90] ; then ∠ = −1

2
Θ0 and ∠

is an interior angle from  to  (see Figure 2.12). By the Exterior Angle Theo-

rem, 1
2
Φ0 = ∠ − 1

2
Θ0; hence ∠ = 1

2
(Θ0 +Φ0).

Figure 2.12.

Cases 3 and 4 are similar and left as exercises. Thus in every case, Φ◦Θ =
Φ0 ◦ Θ0 = ( ◦ ) ◦ ( ◦ ) =  ◦  = Θ0+Φ0 = Θ+Φ

Example 88 Let  =
£
2
2

¤
and  =

£−2
2

¤
 To determine 180 ◦ 90 let  =

←→
 :  = 2  :  = − + 4 and  :  = −2 Then  and  are the unique

lines such that an angle from  to  measures 45 and an angle from  to 

measures 90. Thus 90 =  ◦  180 =  ◦  the center of rotation is
 =  ∩ =

£−2
6

¤
 and

180 ◦ 90 = ( ◦ ) ◦ ( ◦ ) =  ◦  = −90 = 270
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Next, we consider points  and  and a product of rotations Φ ◦ Θ
such that Θ+Φ ∈ 0◦

Theorem 89 (The Angle Addition Theorem, part II) Let  and  be

points, and let Θ and Φ be real numbers such that Θ+Φ ∈ 0◦ Then Φ ◦Θ
is a translation.

Proof. If  =  then Proposition 64 implies Φ ◦Θ = 0 =  which

can be thought of as a trivial translation. So assume  6=  and let  =
←→


Then by Corollary 82, there exist unique lines  and  passing through  and

 respectively, such that Θ =  ◦  and Φ =  ◦  If ΘΦ ∈ 0◦
then Φ ◦ Θ =  can be thought of as a trivial translation. So assume that

ΘΦ ∈ 0◦; then Θ ≡ Θ0 and Φ ≡ Φ0 for some Θ0Φ0 ∈ (0 360) so that  

and  are distinct, some angle from  to  measures 1
2
Θ0 some angle from 

to  measures 1
2
Φ0 and 1

2
Θ0 + 1

2
Φ0 = 180 Thus  cuts  and  with congruent

corresponding angles so that k (see Figure 2.13). Therefore

Φ ◦ Θ = Φ0 ◦ Θ0 = ( ◦ ) ◦ ( ◦ ) =  ◦ 
is a non-identity translation by Theorem 80.

Figure 2.13. The translation Φ ◦ Θ.

Finally, we consider the composition (in either order) of a translation and a

non-identity rotation.

Example 90 Let  =
£
2
2

¤
and  =

£−2
2

¤
 To determine 90 ◦ 270 let  =

←→
 :  = 2  :  =  and  :  =  + 4 Then  and  are the unique

lines such that an angle from  to  measures 135 and an angle from  to 

measures 45. Thus 270 =  ◦  90 =  ◦   k  and the vector

from  to  of minimal length is OB Therefore

180 ◦ 90 = ( ◦ ) ◦ ( ◦ ) =  ◦  = 2OB

Theorem 91 (The Angle Addition Theorem, part III) The composition

of a non-identity rotation Θ and a translation  (in either order) is a rotation

of Θ◦.
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Proof. If  =  there is nothing to prove. So assume  6=  and let  be the

line through  perpendicular to the direction of translation. Let  and  be the

unique lines such that Θ =  ◦  and  =  ◦  Since Θ 6=  lines 

and  are distinct and intersect at  Let Θ0 ∈ (−180 180] such that Θ ≡ Θ0
Since  6=  lines  and  are distinct and parallel. Hence  a transversal for 

and  and the corresponding angles from  to  and from  to  have measure
1
2
Θ0 (see Figure 2.14). Let  =  ∩ ; then

 ◦ Θ =  ◦  ◦  ◦  =  ◦  = Θ

The product Θ ◦  is also a rotation of Θ◦ by a similar argument left to the
reader.

Figure 2.14.

We summarize the discussion in this section by gathering together the various

parts of the Angle Addition Theorem:

Theorem 92 (The Angle Addition Theorem)

a. A rotation of Θ◦ followed by a rotation of Φ◦ is

• a translation if Θ+Φ ∈ 0◦;
• a rotation of (Θ+Φ)◦ otherwise.

b. A translation followed by a non-identity rotation of Θ◦ is a rotation of
Θ◦

c. A non-identity rotation of Θ◦ followed by a translation is a rotation of
Θ◦

d. A translation followed by a translation is a translation.
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Exercises
1. Let  =

£
0
0

¤
and  =

£
2
0

¤


a. Find equations of lines   and  such that 90 =  ◦  and
90 =  ◦ 
b. Find -coordinates of the point  such that  = 90 ◦ 90
c. Find -coordinates for the point  such that  = 90 ◦ 90

2. Let  =
£
0
0

¤
and  =

£
0
1

¤


a. Find equations of the lines   and  such that  =  ◦  and
120 =  ◦ 
b. Find  coordinates for the point  and the angle of rotation Θ such

that Θ = 120 ◦ 
c. Find -coordinates for the point  and the angle of rotation Φ such

that Φ = 120 ◦ 60

3. Let  =
£
4
0

¤
and  =

£
0
4

¤


a. Find equations of lines   and  such that 90 =  ◦  and
120 =  ◦ 
b. Find  coordinates for the point  and the angle of rotation Θ such

that Θ = 120 ◦ 90
c. Find -coordinates for the point  and the angle of rotation Φ such

that Φ = 90 ◦ 120

4. Given distinct points  and  let 150 = 90 ◦ 60 and  =
←→


Use a MIRA to construct lines  and  such that 60 =  ◦  and
90 =  ◦  Label the center of rotation 

5. Given distinct points  and  let 30 = 90 ◦ −60 and  =
←→


Use a MIRA to construct lines  and  such that −60 =  ◦  and
90 =  ◦  Label the center of rotation 

6. Given distinct points  and  let −30 = −90 ◦ 60 and  =
←→


Use a MIRA to construct lines  and  such that 60 =  ◦  and
−90 =  ◦  Label the center of rotation 

7. Given distinct points  and  let −150 = −90◦−60 and =
←→


Use a MIRA to construct lines  and  such that −60 =  ◦  and
−90 =  ◦  Label the center of rotation 
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8. Given distinct points  and  let v = 120 ◦ 240 Use a MIRA to
construct lines  and  such that 240 =  ◦  and 120 =  ◦ 
Construct the translation vector v

9. Given a point  and a non-zero vector v let 90 = v ◦ 90 Use
a MIRA to construct lines   and  such that 90 =  ◦  and
v =  ◦  Label the center of rotation 

10. Given a point  and a non-zero vector v let 90 = 90 ◦ v Use
a MIRA to construct lines   and  such that v =  ◦  and
90 =  ◦  Label the center of rotation 

11. Given distinct points  and  use a MIRA to construct a point  such

that 60 = PB ◦ 60

12. Given distinct non-collinear points  and  use a MIRA to construct

the point  such that 60 = AB ◦ 60

13. Let  be a point and let  be a translation. Prove there exists a point 

such that  ◦  =  (c.f. Section 2.1, Exercise 5).

14. Complete the proof of Theorem 87: Let  and  be points, and let Θ and

Φ be real numbers such that Θ+Φ ∈ 0◦
a. Case 3. Assume 1

2
Θ0 1

2
Φ0 ∈ (−90 0) and prove that Φ ◦ Θ =

Θ+Φ

b. Case 4. Assume 1
2
Θ0 ∈ (0 90] and Φ0 ∈ (−90 0) and prove that

Φ ◦ Θ = Θ+Φ

15. Complete the proof of Theorem 91: Let  be a point, let Θ ∈ 0◦ and let
 be a translation. Prove there exists a point  such that Θ ◦ = Θ

2.4 Glide Reflections

If we left-multiply both sides of the equation  ◦ =  ◦ by  we obtain
 ◦  ◦  =  and the following corollary of Theorems 81 and 84:

Corollary 93 Let   and  be lines (not necessarily distinct).

a. If   and  are concurrent at point , there exists a unique line 

passing through  such that

 =  ◦  ◦ 
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b. If   and  are parallel, there exists a unique line  parallel to  

and  such that

 =  ◦  ◦ 

Thus the composition of three reflections in three concurrent lines (or three

parallel lines) is a reflection in some unique line concurrent with (or parallel to)

them. The converse is also true (see Exercise 6).

Proposition 94 Lines   and  are either concurrent or mutually parallel

if and only if there exists a unique line  such that  ◦  ◦  = 

But what do we get when we compose three reflections in distinct lines that

are neither concurrent nor mutually parallel? Proposition 94 says we don’t get

a reflection. So we’re left with a rotation, a translation, or perhaps something

entirely new! Suppose lines   and  are neither concurrent nor mutually

parallel. Then two of these, say  and  must intersect at a point .

I claim that  ◦  ◦  has no fixed points and, consequently, is not a
rotation. Let Θ be the measure of an angle from  to  and let  0 =  ( ) 

Suppose there is a point  such that  = ( ◦  ◦ ) ( ) ; then composing
 with both sides gives 

0 =  ( ) = ( ◦ ) ( ) = 2Θ ( )  Hence  is

the perpendicular bisector of
←−→
 0 and passes through the center of rotation 

which is impossible since   and  are not concurrent.

I claim that  ◦  ◦  is not a dilatation, and consequently, is not a
translation. Let  be the line through  parallel to  By Theorem 81, there is a

unique line  through  such that  ◦ =  ◦ Let v be the vector in the
orthogonal direction from  to  whose magnitude is twice the distance from 

to  Then  ◦  ◦  =  ◦  ◦  = v ◦  Choose any line  through
 distinct from  and not perpendicular to  Let  =  ()  Then  ∦  while
 k v () since v is a dilatation. Therefore (v ◦ ) () ∦ . To summarize,
we have

Proposition 95 If distinct lines   and  are neither concurrent nor mu-

tually parallel, the composition  ◦  ◦  is neither a reflection, a rotation,
nor a translation.

The fact that the composition  ◦  ◦  is a “glide reflection” is content
of Theorem 100 — the main result in this section.

Definition 96 Let v be a non-zero vector and let  be a line. A transformation

 : R2 → R2 is a glide reflection with glide vector v and axis  if and only
if

1.  =  ◦ v;

2. v () = 
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Imagine the pattern of footprints you make when walking in the sand on a

beach, and imagine that your footprint pattern extends infinitely far in either

direction. Imagine a line  positioned midway between your left and right foot-

prints. In your mind, slide the entire pattern one-half step in a direction parallel

to  then reflect it in line  The image pattern, which exactly superimposes on

the original pattern, is the result of performing a glide reflection with axis  (see

Figure 2.15).

Figure 2.15: Footprints fixed by a glide reflection.

Here are some important properties of a glide reflection:

Proposition 97 Let  be a glide reflection with glide vector v and axis 

a.  interchanges the halfplanes of 

b.  has no fixed points

c. The midpoint of point  and its image  ( ) lies on 

d.  fixes exactly one line, its axis 

Proof. By definition,  =  ◦ v. Let  be any point and let  = v ( ) 

If  is on  so are  and the midpoint of  since v () =  Furthermore,

 6=  since v 6= 0; thus  ( ) =  (v ( )) =  () =  6=  and  has

no fixed points on  If  is off , let  0 =  ( )  Then  and  lie on the

same side of , in which case  and  0 lie on opposite sides of  Thus 

interchanges the halfplanes of  and has no fixed points off  This proves (a)

and (b). Let  =  0 ∩  let  be the midpoint of  0 and let  be the
foot of the perpendicular from  to

←→
 (see Figure 2.16). Then  lies on  by

definition of   ∼=  ∼=  0 ∠ ∼= ∠ 0 since these angles are

corresponding, and the angles ∠ 0 and ∠ are right angles. Therefore

4 0 ∼= 4 by  and  =  0 (CPCTC) so that  is the

midpoint of  0 which proves (c). To prove (d), suppose  () =  and let 

be a point on  Then  0 =  ( ) is a point on  =
←−→
 0 as is the midpoint 

of  0 But  is also on  by part (c) above. Hence  0 =  () is on  by

definition of  and  0 is on  by assumption. Therefore  = 
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Figure 2.16.

A glide reflection can be expressed as a composition of three reflections in

the following way:

Theorem 98 A transformation  is a glide reflection with axis  if and only if

there exist distinct parallels  and  perpendicular to  such that  =  ◦ ◦

Proof. Given a glide reflection  with axis  write  = ◦  where  () = 

and  6=  Let  be a point on  then 0 =  () is also on  and is distinct from

 Let  be the midpoint of 0 and let  and  be the lines perpendicular to

 at  and  respectively. Then by Corollary 79,  = 2AB =  ◦  6=  and

it follows that  =  ◦  ◦  Conversely, given distinct parallel lines  and 

and a common perpendicular  let  = ∩  and  = ∩  Then 2AB () = 

and 2AB 6=  so that  =  ◦ ◦ =  ◦ 2AB is a glide reflection with axis


A glide reflection can also be expressed as a reflection in some line  followed

by a halfturn with center off  (or vice versa).

Theorem 99 The following are equivalent:

a.  is a glide reflection with axis  and glide vector v

b.  =  ◦ v and v () = 

c. There is a line  ⊥  and a point  on  and off  such that  =  ◦ 
d. There is a line  ⊥  and a point  on  and off  such that  =  ◦ 
e.  = v ◦  and v () = 

Proof. Statements (a) and (b) are equivalent by definition. To show the

equivalence of (b), (c), (d), and (e), use Theorem 98 to choose parallels  and

 perpendicular to  such that  =  ◦  ◦  Then  ◦  =  ◦  and
 ◦  =  ◦  Furthermore, v =  ◦  implies v () =  Let  =  ∩ 
and  =  ∩ ; then  ◦ v =  ◦  ◦  =  ◦  so that (b) ⇒ (c);

 ◦  =  ◦  ◦  =  ◦  ◦  =  ◦  so that (c) ⇒ (d); and
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 ◦  =  ◦  ◦  =  ◦  ◦  = v ◦  so that (d) ⇒ (e). Finally,

v ◦ =  ◦ ◦ =  ◦ ◦ =  ◦ ◦ =  ◦ v so that (e)⇒ (b).

Figure 2.17.  =  ◦ 

We can use Theorem 99 to construct the axis of a glide reflection. If  =

 ◦ and  is off  then  is a glide reflection whose axis is the line through

 perpendicular to  Likewise, if  =  ◦  and  is off  then  is a glide

reflection whose axis is the line through  perpendicular to 

Theorem 100 Let   and  be distinct lines. Then  =  ◦  ◦  is a
glide reflection if and only if , and  are neither concurrent nor mutually

parallel.

Proof. (⇒) We prove the contrapositive. Suppose distinct lines   and

 are concurrent or mutually parallel. Then  =  ◦  ◦  is a reflection by
Corollary 93, which is not a glide reflection (reflections have fixed points and

glide reflections do not by Proposition 97, part b).

(⇐) Assume that   and  are neither concurrent nor mutually parallel.

Then lines  and  are either intersecting or parallel, and we consider two cases:

Case 1: ∩ =  Since   and  are not concurrent,  lies off  Let  be

the foot of the perpendicular from  to  and let  =
←→
. By Theorem 81,

there is a unique line  passing through  such that

 ◦  =  ◦ 

But  6=  since  6=  and  is off  since  is on  and  6=  Thus there is

a point  off line  such that

 =  ◦  ◦  =  ◦  ◦  =  ◦ 

which is a glide reflection by Theorem 99 (c).

Case 2:  k . Then  is a transversal for  and  and intersects  at some
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point  . Consider the composition  ◦  ◦  By Case 1 above, there is a
point  off line  such that

 ◦  ◦  =  ◦ 

Hence,

 =  ◦  ◦  = ( ◦  ◦ )−1 =
¡
 ◦ 

¢−1
=  ◦ 

which is a glide reflection by Theorem 99 (d).

In view of Theorem 99, the equations of a glide reflection are easily obtained.

Corollary 101 Let  be a glide reflection with axis  :  +  +  = 0 and

glide vector v =
£



¤
 Then +  = 0 and the equations of  are given by

0 = − 2
2+2

(+  + ) + 

0 =  − 2
2+2

(+  + ) + 


Proof. Using Theorem 99 (e), write  = v ◦  Then v with vector

v =
£



¤
fixes the axis  :  +  +  = 0 if and only if  is in the direction

of v if and only if  +  = 0 The equations of  are the equations of the

composition v ◦ 

Example 102 Consider the line  : 3 − 4 + 1 = 0 and the translation v
where v =

£
4
3

¤
 Since  +  = (3) (4) + (−4) (3) = 0 the line  is in the

direction of v Hence  =  ◦  is the glide reflection with equations

0 = 1
25
(7+ 24 + 94)

0 = 1
25
(24− 7 + 83) 

Let  =
£
0
19

¤
and  0 =

£
22
−2
¤
= 

¡£
0
19

¤¢
; then the midpoint  =

£
11
17
2

¤
of  0 is

on 

Here are some useful facts about glide reflections.

Theorem 103 Let  be a glide reflection with axis  and glide vector v

a. −1 is a glide reflection with axis  and glide vector −v
b. If  is any translation such that  () =  then  ◦  =  ◦  
c. 2 = 2v 6= 

Proof. The proof of statement (a) is left to the reader. To prove (b), assume

that  is a non-identity translation such that  () = . Let  be a point on ;

then  = () 6=  is a point on  and  = AB Thus  ◦ is a glide reflection
and

 ◦  =  ◦  (2.7)
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by Theorem 99 (a). On the other hand,  =  ◦ v by definition, and any two
translations commute by Proposition 45, part (2). These facts together with

equation (2.7) give

 ◦  =  ◦ v ◦  =  ◦  ◦ v =  ◦  ◦ v =  ◦ 

To prove part (c), write  =  ◦ v and apply Theorem 99 (a) to obtain

2 = ( ◦ v)2 =  ◦ v ◦  ◦ v =  ◦  ◦ v ◦ v = (v)2 = 2v;

thus 2 is a non-identity translation by vector 2v.

We conclude this section with an important construction. Let ,  and 

be lines containing the sides of a non-degenerate triangle with vertices  

and  labeled so that  is opposite   is opposite  and  is opposite  (see

Figure 2.18). Let  and  be the feet of the altitudes from  to  and from

 to  respectively. If ∠ is not a right angle,  6=  and the axis of the

glide reflection  =  ◦  ◦  is ←→ To see this, let  =
←→
 ; by Theorem

81 there is a unique line  pasing through  such that  ◦  =  ◦ . Thus
 =  ◦ ◦ =  ◦ ◦ =  ◦ and the line through  perpendicular

to  is the axis by Theorem 99 (c). Now repeat this argument at the vertex :

Let  =
←→
; by Theorem 81 there is a unique line  passing through  such

that  ◦  =  ◦  Thus  =  ◦  ◦  =  ◦  ◦  =  ◦  and the
line through  perpendicular to  is the axis by Theorem 99 (d).

Figure 2.18.
←→
 is the axis of glide reflection  =  ◦  ◦ 

In summary, we have proved:

Theorem 104 Let ,  and  be lines containing the sides of a non-degenerate

triangle 4 with vertices labeled so that   and  are opposite  

and  respectively. If ∠ is not a right angle, and  and  are the feet of
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the altitudes from  to  and from  to  then the axis of the glide reflection

 =  ◦  ◦  is ←→

Exercises
1. The parallelogram “0” in the figure below is mapped to each of the other

eight parallelograms by a reflection, a translation, a glide reflection or a

halfturn. Indicate which of these apply in each case (more than one may

apply in some cases).

2. A glide reflection  maps 4 onto 400 0 in the diagram below.

Use a MIRA to construct the axis and glide vector of .

A'

B'

C'

C

B

A

3. Consider a non-degenerate triangle 4 with sides ,  and  opposite

vertices   and  respectively. Assume that 4 is not a right

triangle, and let   and  be the feet of the respective altitudes from

 to  from  to  and from  to .
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(a) Use a MIRA and Theorem 104 to construct the axis and glide vector

of 0 =  ◦  ◦ 

(b) Use a MIRA and Theorem 104 to construct the axis and glide vector

of 00 =  ◦  ◦ 

(c) Use a MIRA and Theorem 104 to construct the axis and glide vector

of 000 =  ◦  ◦ 

4. Consider a non-degenerate 4 with sides ,  and  opposite vertices

  and  respectively, let  =  ◦ ◦ and let Θ Φ and Ψ be the
respective measures of the interior angles of 4 as indicated in the

diagram below. Show that 2Ψ ◦ 2Φ ◦ 2Θ = 2 but 2Θ ◦ 2Φ ◦
2Ψ = 

5. Let  =  ◦ ◦ be a glide reflection such that exactly two of   and
 are parallel. Construct the axis and glide vector of  in each case.

6. Prove the converse of Proposition 94: Given lines   and  and a line 

such that  =  ◦  ◦  prove that   and  are either concurrent

or mutually parallel.

7. If lines   and  are either concurrent or mutually parallel, prove that

 ◦  ◦  =  ◦  ◦ 

8. Given a non-degenerate triangle 4 let  be the side opposite ∠
and let   and  be the respective angle bisectors of ∠ ∠ and ∠
Then   and  are concurrent by Exercise 20, Section 1.1, and there is

a unique line  such that  ◦  ◦  =  by Corollary 93 (a). Prove

that ⊥.

n

l

m

p

b

a

Q

B

A

C
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9. Let  be the line with equation −2 +3 = 0; let  = £ 4−1¤ and  = £81¤
a. Write the equations for the composite transformation  = PQ ◦ 
b. Find the image of

£
1
2

¤

£−2
5

¤
and

£−3
−2
¤
under 

c. Prove that  =  ◦ PQ is a glide reflection.

10. Let  be a glide reflection with axis  and glide vector v If 2 = 2w show

that w = v

11. Let  be a glide reflection with axis  and glide vector v Given any point

 on  construct a point  off  such that  is the midpoint of  and

 ( ) 

12. Given a translation  with vector v, find the glide vector and axis of a

glide-reflection  such that 2 =  .

13. Prove Theorem 103 (a): If  is a glide reflection with axis  and glide

vector v then −1 =  ◦ −1v is a glide reflection with axis  and glide

vector −v

14. Use Theorem 100 to prove that the perpendicular bisectors of the sides in

any non-degenerate triangle, are concurrent (cf. Scetion 2, Exercise 19).
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Classification of Isometries

3.1 The Fundamental Theorem and Congruence

In this section we characterize isometries as products of three or fewer reflections

and express the notion of congruence in terms of isometries. But first we need

some additional facts about fixed points.

Theorem 105 An isometry that fixes two distinct points is either a reflection

or the identity.

Proof. We assume that  6=  and show that  is a reflection. Let  and 

be distinct points, let =
←→
 and let  be an isometry that fixes  and  Let

 be any point such that 0 =  () 6=  Then   and  are non-collinear

by Theorem 71 and  = 0 and  = 0 since  is an isometry. Since
 and  are equidistant from  and 0 line  is the perpendicular bisector of

0 Hence

() = 0 = () ( ) =  = ( ) and () =  = ()

so that  =  by Theorem 73.

Theorem 106 An isometry that fixes exactly one point is a non-identity rota-

tion.

Proof. Let  be an isometry with exactly one fixed point  let  be a point

distinct from  and let  0 = ( ) Since  is an isometry,  =  0 so that
 is on the perpendicular bisector  of  0 (see Figure 3.1). But ( 0) = 

by definition of a reflection, and it follows that

( ◦ )() = (()) = () = 

and

( ◦ )( ) = (( )) = (
0) = 

61
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Since  ◦  is an isometry and fixes the distinct points  and  Theorem

105 tells us that either  ◦  =  or  ◦  =  where  =
←→
 However, if

 ◦ =  then  = , which is impossible since  has infinitely many fixed

points. Therefore

 ◦  = 

so that

 =  ◦ 
But  6=  since  6=  0; hence  is a non-identity rotation by Theorem 76.

Figure 3.1.

Thinking of the identity as a trivial rotation, we summarize Theorems 105

and 106 as:

Theorem 107 An isometry with a fixed point is either a reflection, or a rota-

tion. An isometry with exactly one fixed point is a non-identity rotation.

We have established the facts we need to prove our first major result, which

characterizes an isometry as a product of three or fewer reflections:

Theorem 108 (The Fundamental Theorem of Transformational Plane

Geometry) A transformation  is an isometry if and only if  can be expressed

as a composition of three or fewer reflections.

Proof. By Exercise 1.1.3, the composition of isometries is an isometry. Since

reflections are isometries, a composition of reflections is an isometry. Conversely,

if  =  choose any line  and write  =  ◦. If  6=  choose a point  such

that  0 = ( ) 6=  and let  be the perpendicular bisector of  0 Then

( ◦ )( ) = (( )) = (
0) = 

i.e.,  =  ◦  fixes the point  By Theorem 107,  can be expressed as a

composition of two or fewer reflections, which means that

 =  ◦ 

can be expressed as a composition of three or fewer reflections.
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Our next theorem expresses the notion of congruence in terms of isometries.

Since an isometry is completely determined by its action on three distinct non-

collinear points, by the Three Points Theorem, the procedure in the proof of

Theorem 109 gives us a constructive way to express a given isometry as a product

of three or fewer reflections.

Theorem 109 4 ∼= 4 if and only if there is a unique isometry 

such that ( ) =  () =  and () = 

Proof. Given 4 ∼= 4 Theorem 73 tells us that if an isometry 

with the required properties exists, it is unique. Our task, therefore, is to show

that such an isometry  does indeed exist; we’ll do this by constructing  as

an explicit product of three isometries 3 ◦ 2 ◦ 1 each of which is either the
identity or a reflection. Begin by noting that

 =   =  and  =  (3.1)

by  (see Figure 3.4).

Figure 3.4.

The isometry 1: If  =  let 1 =  Otherwise, let 1 =  where  is the

perpendicular bisector of  In either case,

1( ) = 

Let

1 = 1() and 1 = 1()

and note that

 = 1  = 1 and  = 11 (3.2)

(see Figure 3.5).
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Figure 3.5.

The isometry 2: If 1 =  let 2 =  Otherwise, let 2 =  where  is the

perpendicular bisector of 1 By (5.4) and (3.2) we have

 =  = 1

so the point  is equidistant from points  and 1 Therefore  lies on  and

in either case we have

2() =  and 2(1) = 

Let

2 = 2(1)

and note that

1 = 2 and 11 = 2 (3.3)

(see Figure 3.6).

Figure 3.6.
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The isometry 3: If 2 =  let 3 =  Otherwise, let 3 =  where  is the

perpendicular bisector of 2 By (5.4), (3.2), and (3.3) we have

 =  = 1 = 2

so the point  is equidistant from points  and 2 and lies on  On the other

hand, (5.4), (3.2), and (3.3) also give

 =  = 11 = 2

so the point  is equidistant from points  and 2 and also lies on  In either

case we have

3() =  3() =  and 3(2) = 

Let  = 3 ◦ 2 ◦ 1 and observe that

( ) = 3(2(1( ))) = 3(2()) = 3() = 

() = 3(2(1())) = 3(2(1)) = 3() = 

() = 3(2(1()) = 3(2(1)) = 3(2) = 

Therefore  is indeed a product of three or fewer reflections. The converse

follows from the fact that isometries preserve length and angle (see Proposition

26, part 4).

The following remarkable characterization of congruent triangles is an im-

mediate consequence of Theorems 108 and 109:

Corollary 110 4 ∼= 4 if and only if 4 is the image of 4

under a composition of three or fewer reflections.

Corollary 111 Two segments or two angles are congruent if and only if there

exists an isometry mapping one onto the other.

Proof. Two congruent segments or angles are contained in a pair of con-

gruent triangles so such an isometry exists by Theorem 109. Since isometries

preserve length and angle the converse also follows.

Now we can define a general notion of congruence for arbitrary plane figures.

Definition 112 Two plane figures 1 and 2 are congruent if and only if there

is an isometry  such that 2 =  (1).

Exercises
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1. Let  =
£
0
0

¤
;  =

£
5
0

¤
;  =

£
0
10

¤
;  =

£
4
2

¤
;  =

£
1
−2
¤
;  =

£
12
−4
¤
 Given that

4 ∼= 4 apply the algorithm in the proof of Theorem 109 to

find three or fewer lines such that the image of 4 under reflections

in these lines is 4

2. Let  =
£
6
7

¤
;  =

£
3
14

¤
;  =

£
8
15

¤
 In each of the following, 4 ∼=

4 Apply the algorithm in the proof of Theorem 109 to find three or

fewer lines such that the image of 4 under reflections in these lines

is 4

  

a.
£
12
1

¤ £
9
8

¤ £
14
9

¤
b.

£−1
10

¤ £−8
7

¤ £−9
12

¤
c.

£
4
−9
¤ £

7
−16
¤ £

2
−17
¤

d.
£ −4
−15
¤ £−11

−12
¤ £−12

−17
¤

e.
£−5
−4
¤ £−12

−1
¤ £−13

−6
¤

3.2 Classification of Isometries and Parity

In this section we prove our second major result—the classification of isometries.

We also define the notion of “parity”, which is a property of an isometry that

helps us identify its type, and relate it to the notion of an “orientation” of the

plane.

Theorem 113 (Classification of Isometries) An isometry is exactly one of

the following types: A reflection, a glide reflection, a rotation, or a non-identity

translation.

Proof. Every isometry is a composition of three or fewer reflections by The-

orem 108. A composition of two reflections in distinct parallel lines is a trans-

lation by Theorem 80. A composition of two reflections in distinct intersecting

lines is a rotation by Theorem 76. The identity is both a trivial translation (with

vector v = 0) and a trivial rotation (of angle Θ ∈ 0◦). Non-identity transla-
tions are fixed point free, but fix every line in the direction of translation by

Theorem 50. By definition, a non-identity rotation fixes exactly one point—its

center—and a reflection fixes every point on its axis. Hence translations, non-

identity rotations, and reflections form mutually exclusive familes of isometries.

A composition of three reflections in concurrent or mutually parallel lines is a

reflection by Corollary 93. A composition of three reflections in non-concurrent
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and non-mutually parallel lines is a glide reflection by Theorem 100. A glide

reflection has no fixed points by Proposition 97, part b; consequently, a glide

reflection is neither a rotation nor a reflection. A glide reflection fixes exactly

one line—its axis—by Proposition 97, part d; consequently, a glide reflection is

not a translation.

Figure 3.2 pictures the various configurations of three of fewer lines that may

appear. Successively reflecting in the lines in these configurations gives various

representations of the isometries as compositions of reflections. The first, second

and third configurations represent reflections while the fourth and fifth configu-

rations represent glide reflections. The sixth represents a non-identity rotation

and the seventh represents a non-identity translation. Note that compositions

of the form  ◦  ◦  also represent reflections since the axes of reflection are
parallel when k and concurrent when  ∦ .

Figure 3.2. Configurations of lines representing reflections, translations,

rotations, and glide reflections.

The Classification of Isometries Theorem is an example of mathematics par

excellence—one of the crown jewels of this course. Indeed, the ultimate goal of

any mathematical endeavor is to find and classify the objects studied. This is

typically a profoundly difficult problem and rarely solved. Thus a complete solu-

tion of a classification problem calls for great celebration! And the Classification

of Isometries Theorem is no exception.

“Parity” is a property of an isometry that helps us identify its type. Our

next theorem will allow us to define the notion of parity precisely. But first we

prove a lemma that will be useful in the proof of the theorem.

Lemma 114 Let  and  be lines and let  be a point. There exist lines 0 and
0 with 0 passing through  such that

0 ◦ 0 =  ◦ 
Proof. If  and  intersect at  there is nothing to prove. If  and 

intersect at  6=  let 0 =
←→
 If k let 0 be the line through  parallel to

 In either case, there is a unique line 0 such that

0 ◦ 0 =  ◦ 
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by Theorems 81 and 84.

Theorem 115 A composition of four reflections reduces to a composition of

two reflections, i.e., given lines    and  there exist lines  and  such

that

 ◦  ◦  ◦  =  ◦ 
Proof. Choose a point  on line  and consider the composition  ◦ 

By Lemma 114, there exist lines 0 and 0 with 0 passing through  such that

0 ◦ 0 =  ◦ 
Next, consider the composition  ◦0  By Lemma 114, there exist lines 00 and
0 with 00 passing through  such that

 ◦ 00 =  ◦ 0 
Now  0 and 00 are concurrent at  By Corollary 93, there is a unique line 
such that

00 ◦ 0 ◦  = 

Therefore

 ◦  ◦  ◦  =  ◦ 0 ◦ 0 ◦  =  ◦ 00 ◦ 0 ◦  =  ◦ 

Figure 3.3. Here we chose  =  ∩ 

Repeated applications of Theorem 115 reduces a product of an odd number of

reflections to three reflections or one, but never to a product of two. Likewise,
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a product of an even number of reflections reduces to two reflections or the

identity, but never to a product of three or one. Since every isometry is a product

of three or fewer reflections by the Fundamental Theorem, each isometry falls

into one of two mutually exclusive families: (1) Those that can be represented as

a product of an even number of reflections and (2) those that can be represented

as a product of an odd number of reflections.

Definition 116 An isometry is even if and only if it factors as a product of an

even number of reflections; otherwise it is odd.

Theorem 117 An odd isometry is either a reflection or a glide reflection. An

even isometry is either a translation or a rotation (the identity is a trivial ro-

tation).

Proof. Let  be an isometry. If  is odd and has a fixed point, it is a

single reflection by Theorem 105. If  is odd and fixed point free, it is a glide

reflection by Proposition 97 and Theorem 100. If  is even with exactly one

fixed point, it is a rotation by Theorem 76. If  is even with more than one

fixed point, it is the identity by Theorem 105. If  is even and fixed point free,

it is a non-identity translation by Theorem 80.

Theorem 118 Every even involutory isometry is a halfturn; every odd involu-

tory isometry is a reflection.

Proof. Reflections are involutory isometries, so consider an involutory isom-

etry  that is not a reflection. We claim that  is a halfturn. Since  6=  there

exist distinct points  and  0 such that ( ) =  0 By applying  to both sides
we obtain

2( ) = ( 0)

Since  is an involution, 2( ) =  Hence ( 0) =  and  interchanges the

points  and  0. Let  be the midpoint of  and  0 then  − −  0 and
 =  0 Let  0 = (); then  − 0 −  0 and  0 =  0 0 since  is
an isometry, a collineation, and preserves betweenness. It follows  is a fixed

point; hence  is either a non-identity rotation about  or a reflection in some

line containing by Theorem 107. Since  is not a reflection, it is an involutory

rotation about  i.e., a halfturns by Corollary 67. Therefore  =   and it

follows that an involutory isometry is either a reflection or a halfturn. The

conclusion follows from the fact that reflections are odd and halfturns are even.

The notion of an “orientation” of the plane is closely related to parity. As

we shall see, even isometries preserve orientation and odd isometries reverse it.

Recall that positive angle measure is defined counter clockwise. But equally

well, we could have defined positive angle measure clockwise. Such a choice is

called an “orientation” of the plane.
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Recall that a basis for R2 is a pair of non-zero, non-parallel vectors {v1v2}.
If w is an arbitrary vector, the system of linear equations v1 + v2 = w has a

unique solution, and either

det [v1 | v2]  0 or det [v1 | v2]  0
Thus the sign of det [v1 | v2] places a given ordered basis {v1v2} in one of two
classes—those with positive determinant or those with negative determinant.

Definition 119 An orientation of R2 is a choice of ordered basis {v1v2}. An
orientation {v1v2} is positive (respectively, negative) if and only if det [v1 | v2] 
0 (respectively, det [v1 | v2]  0).
When the orientation is positive, counter clockwise angle measure is positive;

when the orientation is negative, clockwise angle measure is positive.

Example 120 The standard ordered basis {E1E2} is a positive orientation
of R2 and the (counter clockwise) angle measured from E1 to E2 is positive.

However, the ordered basis {E2E1} is a negative orientation of R2 and the
angle measured from E1 to E2 is negative.

Theorem 121 Given an orientation {OAOB}  let Θ = ∠ Then {OAOB}
is positive if and only if some element of Θ◦ lies in (0 180).

Proof. Let 1 =
£
1
0

¤
 let Θ1 = ∠1 and let Θ2 = ∠1 Then

Θ = Θ2 − Θ1 v1 := OA =
£kv1k cosΘ1
kv1k sinΘ1

¤
 and v2 := OB =

£kv2k cosΘ2
kv2k sinΘ2

¤
so that

{v1v2} is positive if and only if
0  det [v1|v2] = (kv1k cosΘ1) (kv2k sinΘ2)− (kv1k sinΘ1) (kv2k cosΘ2)
= kv1k kv2k (cosΘ1 sinΘ2 − sinΘ1 cosΘ2)
= kv1k kv2k sin (Θ2 −Θ1) = kv1k kv2k sinΘ

if and only if some element of Θ◦ lies in (0 180) 

Figure 3.11. The orientation {v1v2} is negative.
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To apply an isometry  to a vector PQ, let  0 =  ( ) and 0 =  () and

define  (PQ) = P0Q0.

Definition 122 A transformation  is orientation-preserving if the orienta-

tions {v1v2} and { (v1)   (v2)} are both positive or both negative; other-
wise  is orientation-reversing. An orientation-preserving isometry is direct;

an orientation-reversing isometry is indirect.

Now given an orientation {v1v2}  let Θ measure of the angle from v1
to v2 as defined above, and let Θ

0 measure the angle from v01 =  (v1) to

v02 =  (v2). If  is orientation-preserving, Θ
0 = Θ; if  is orientation-reversing,

Θ0 = −Θ Recall that the determinant of a matrix reverses sign when two of
its columns (or rows) are interchanged. Thus if  is orientation-preserving,

det [v1|v2] = det [v01|v02]; otherwise det [v1|v2] = −det [v01|v02]. In the later

case, one can recover the original sign by interchanging the columns of [v01|v02] 
which is equivalent to replacing the original ordered basis with the ordered basis

{v02v01}. In this way, an orientation-reversing isometry reverses the order of a
given ordered basis.

The following fact is intuitively obvious, but the proof is somewhat tedious.

We leave the proof to the reader as a series of exercises at the end of this section

(see Exercises 11, 12, 13 and 14).

Proposition 123 Direct isometries are even; indirect isometries are odd.

Exercises
In problems 1-6, the respective equations of lines    and  are given. In each

case, find lines  and  such that  ◦  ◦  ◦  =  ◦  and identify the
isometry  ◦  as a translation, a rotation or the identity.

1.  =   =  + 1  =  + 2 and  =  + 3

2.  =   =  + 1  =  + 2 and  = −

3.  = 0  = 0  =  and  = −

4.  = 0  = 0  = 2 and  = 2

5.  = 0  = 0  = 1 and  =  + 2

6.  = 0  = 0  =  + 1 and  = − + 2
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7. In the diagram below, use a MIRA to construct lines  and  such that

 ◦  ◦  ◦  =  ◦ .

8. Consider the following diagram:

a. Use a MIRA to construct the point  such that Θ =  ◦  ◦ 
and find the rotation angle Θ

b. Use a MIRA to construct the point  such that Φ =  ◦ ◦ ◦
and find the rotation angle Φ

9. Prove that an even isometry with two distinct fixed points is the identity.

10. Identify the isometric dilatations and prove your answer.

11. Prove that translations are direct isometries.

12. Prove that the reflection in a line through the origin reverses orientation.

13. Use Exercises 11 and 12 together with Proposition 126 to prove that re-

flections are indirect isometries.

14. Use Exercise 13 to prove Proposition 123: Direct isometries are even;

indirect isometries are odd.
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3.3 The Geometry of Conjugation

In this section we give geometrical meaning to “algebraic conjugation”, which

plays an important role in our study of symmetry in the next chapter. You’ve

seen conjugation before. For example, when rationalizing the denominator of
1

3+
√
2
we conjugate by 3−√2 i.e.,

1

3 +
√
2
=

µ
1

3 +
√
2

¶Ã
3−√2
3−√2

!
=
3−√2
7



Since multiplication of real numbers is commutative, we can express this conju-

gation in the following seemingly awkward way:µ
1

3 +
√
2

¶Ã
3−√2
3−√2

!
=
³
3−
√
2
´µ 1

3 +
√
2

¶³
3−
√
2
´−1

(3.4)

When multiplication non-commutative, as it is when composing isometries, for

example, conjugation always takes the form in (3.4) above.

Definition 124 Let  and  be transformations. The conjugate of  by  is

the composition

 ◦  ◦ −1

Note that  = ◦ ◦−1 if and only if ◦ =  ◦ i.e.,  and  commute.
Since translations commute we always have u = v ◦ u ◦ −1v for all vectors u

and v We saw an important example of conjugation in the proof of Theorem

63 in which we derived the equations for a rotation about a general point .

Recall that Θ is equivalent to

1. translating from  to  followed by

2. rotating about  through angle Θ followed by

3. translating from  to 

Thus

Θ = OC ◦ Θ ◦ −1OC (3.5)

i.e., Θ is the conjugate of Θ by OC Indeed, since rotations and trans-

lation do not commute, the equations for rotations about  are quite different

from those for rotations about 

Here are some algebraic properties of conjugation.

Theorem 125

a. The square of a conjugate is the conjugate of the square.

b. The conjugate of an involution is an involution.
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Proof. Let  and  be isometries.

(a)
¡
 ◦  ◦ −1¢2 =  ◦  ◦ −1 ◦  ◦  ◦ −1 =  ◦ 2 ◦ −1

(b) If  is an involution then  ◦  ◦ −1 6=  (otherwise  ◦  ◦ −1 =  implies

 = −1 ◦  = ). By part (a),
¡
 ◦  ◦ −1¢2 =  ◦ 2 ◦ −1 =  ◦  ◦ −1 =

 ◦ −1 =  and  ◦  ◦ −1 is an involution.
Here are some geometrical consequences.

Proposition 126 Conjugation preserves parity, i.e., if  and  are isometries,

then  and  ◦ ◦−1 have the same parity; both either preserve orientation or
reverse orientation.

Proof. By Theorem 108 we know that  factors as a product of reflections.

Since the inverse of a product is the product of the inverses in reverse order, 

and −1 have the same parity and together contribute an even number of factors
to every factorization of  ◦  ◦ −1 as a product of reflections. Therefore the
parity of an isometry  is the same as the parity of  ◦  ◦ −1. The fact that
 and  ◦  ◦−1 both either preserve orientation or reverse orientation follows
immediately from Proposition 123.

Theorem 127 Let  be an isometry.

a. The conjugate of a halfturn is a halfturn. Furthermore, if  is any point,

then

 ◦  ◦ −1 = ( )

b. The conjugate of a reflection is a reflection. Furthermore, if  is any line,

then

 ◦  ◦ −1 = ()

Proof. (a) Since  is even by Corollary 78, so is ◦ ◦−1 by Proposition
126. Furthermore,  ◦  ◦ −1 is an involution by Theorem 125. By Theorem

118, involutory isometries are either reflections (which are odd) or halfturns

(which are even), so  ◦  ◦ −1 is a halfturn. To locate its center, observe
that¡

 ◦  ◦ −1
¢
(( )) =

¡
 ◦  ◦ −1 ◦ 

¢
( ) = ( ◦  ) ( ) = ( )

Since ( ) is fixed by the halfturn  ◦  ◦ −1 we have

 ◦  ◦ −1 = ( )
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Figure 3.7: Conjugation of  by  

(b) Since  is odd, so is ◦◦−1 by Proposition 126. Furthermore ◦◦−1

is an involution by Theorem 125. By Theorem 118 involutory isometries are

either halfturns (which are even) or reflections (which are odd), so  ◦  ◦ −1
is a reflection. To determine its axis, observe that for every point  on ¡

 ◦  ◦ −1
¢
(( )) =

¡
 ◦  ◦ −1 ◦ 

¢
( ) = ( ◦ ) ( ) = ( )

Since every point ( ) on () is fixed by the reflection  ◦  ◦ −1 its axis is
() and we have

 ◦  ◦ −1 = ()

Figure 3.8: Conjugation of  by  

Theorem 128 The conjugate of a translation is a translation. Furthermore, if

 is an isometry,  and  are points, 0 = () and 0 = (), then

 ◦ AB ◦ −1 = A0B0 



76 CHAPTER 3. CLASSIFICATION OF ISOMETRIES

Proof. Let  be the midpoint of  and ; then

AB =  ◦ 
by Theorem 68 Since  is an isometry, 0 = () is the midpoint of 0 = ()

and 0 = () So again by Theorem 68,

A0B0 =  0 ◦ 0 

Therefore, by Theorem 127 (part a) we have

 ◦ AB ◦ −1 =  ◦ ( ◦ ) ◦ −1
= ( ◦  ◦ −1) ◦ ( ◦  ◦ −1)
=  0 ◦ 0 = A0B0 

Figure 3.9. Conjugation of AB by 

Our next theorem generalizes the remarks related to (3.5) above:

Theorem 129 The conjugate of a rotation is a rotation. If  is an isometry,

 is a point and Θ ∈ R then

 ◦ Θ ◦ −1 =
½

()Θ if  is even

()−Θ if  is odd
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Proof. Since  is the a product of three or fewer reflections, we consider

each of the three possible factorizations of  separately.

Case 1: Let  be a line and let  =  Then  = −1 is odd and we must show
that  ◦ Θ ◦  = ()−Θ If  is on  there is a unique line  passing

through  such that Θ =  ◦  by Corollary 82. Therefore
 ◦ Θ ◦  =  ◦  ◦  ◦  =  ◦  = −Θ = ()−Θ

If  is off  let  be the line through  perpendicular to  By Corollary 82,

there is a (unique) line  passing through  such that

Θ =  ◦ 
(see Figure 3.10).

Figure 3.10.

Hence

 ◦ Θ ◦  =  ◦  ◦  ◦  = ( ◦  ◦ ) ◦ ( ◦  ◦ )
and Theorem 127 we have

( ◦  ◦ ) ◦ ( ◦  ◦ ) = () ◦ () (3.6)

Since ⊥ we know that
() = 

Furthermore,  =  ∩  so that
() =  ∩ ()

Since the measure of an angle from  to  is 1
2
Θ the measure of an angle from

 to () is −12Θ By Theorem 75, the right-hand side in (3.6) becomes

() ◦  = ()−Θ



78 CHAPTER 3. CLASSIFICATION OF ISOMETRIES

and we conclude that

 ◦ Θ ◦  = ()−Θ (3.7)

Case 2: Let  and  be lines. Since  =  ◦  is even, we must show that

◦Θ◦−1 = ()Θ But two successive applications of (3.7) give the desired

result:

 ◦ Θ ◦ −1 = ( ◦ ) ◦ Θ ◦ ( ◦ )−1
=  ◦ ( ◦ Θ ◦ ) ◦ 
=  ◦ ()−Θ ◦  = ()Θ

Case 3: Let   and  be lines. Since  =  ◦  ◦  is odd, we must show
that  ◦ Θ ◦−1 = ()−Θ This time, three successive applications of (3.7)
in the manner of Case 2 give the result, as the reader can easily check.

Example 130 Look again at the discussion on the equations for general rota-

tions above. Equation (3.5) indicates that OC ◦ Θ ◦ −1OC = Θ Since OC
is even and OC() =  we have

OC ◦ Θ ◦ −1OC = OC()Θ

which confirms the conclusion of Theorem 129.

Theorem 131 The conjugate of a glide reflection is a glide reflection. If 

is an isometry and  is a glide reflection with axis  and glide vector AB let

0 =  () and 0 =  ()  Then  ◦ ◦−1 is a glide reflection with axis ()
and glide vector A0B0

Proof. Consider a glide reflection  with axis  and glide vector AB and

let  be an isometry. Since  is odd, so is ◦ ◦−1 which is either a reflection
or a glide reflection by Theorem 117. But 2 = 2AB by Theorem 103 (part b)

so that¡
 ◦  ◦ −1¢2 =  ◦ 2 ◦ −1 =  ◦ 2AB ◦ −1 =  ◦ 2AB ◦ −1

= ( ◦ AB ◦ )2 = 2A0B0 = 2A0B0 6= 

by Theorem 128. Since  ◦  ◦ −1 is not an involution, it is a glide reflection
with glide vector A0B0 by Exercise 8 at the end of this section. To determine
the axis, note that  ◦  ◦ −1 fixes the line () :¡

 ◦  ◦ −1¢ (()) = ¡ ◦  ◦ −1 ◦ ¢ () = ( ◦ ) () =  (()) =  () 

Since the only line fixed by a glide reflection is its axis, hence () is the axis.

Let’s apply these techniques to draw some interesting geometrical conclu-

sions.
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Theorem 132 Two non-identity rotations commute if and only if they have

the same center of rotation.

Proof. Let Θ and Φ be non-identity commuting rotations. Since Θ
is even, apply Theorem 129 and obtain

Θ()Φ = Θ ◦ Φ ◦ −1Θ = Φ ◦ Θ ◦ −1Θ = Φ

if and only if Θ () =  if and only if  = 

Theorem 133 Two reflections  and  commute if and only if  =  or

⊥

Proof. By Theorem 127 we have

() =  ◦  ◦  =  ◦  ◦  = 

if and only if () =  if and only if  =  or ⊥

Exercises

1. Given a line  and a point  off  construct the line  such that  ◦ ◦
 = 

2. Given a line  and a point  off  construct the point  such that  ◦
 ◦  =  

3. Given a line  and a point  such that  ◦  ◦  =  prove that 

lies on 

4. Let  and  be distinct points and let  be a line. Prove that  ◦ =
 ◦  if and only if  () = 

5. Let  and  be distinct points. Prove that if Θ+ Φ ∈ 0◦ Φ ◦ Θ =
Θ+Φ and Θ ◦ Φ = Θ+Φ then  = ←→


() 

6. Let  be a line and let be a point. Prove that ◦◦◦◦◦◦
is a reflection in some line parallel to 

7. Let  be a point and let  be a non-identity translation. Prove that

 ◦  6=  ◦ 

8. Let  be a glide reflection with axis  and glide vector v If 2 = 2w show

that v = w
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9. Prove that  ◦  6=  ◦  for every glide reflection  with axis 

10. Let  and  be distinct points and let  be a glide reflection with axis

. Prove that  ◦  =  ◦  if and only if  () = 

11. Complete the proof of Theorem 129 by proving Case 3.



Chapter 4

Symmetry

A “symmetry” of a plane figure  is an isometry that fixes  If  is an equi-

lateral triangle with centroid , for example, there are six symmetries of  one

of which is the rotation 120 In this chapter we observe that the set of sym-

metries of a given plane figure is a “group” under composition. The structure

of these groups, called symmetry groups, encodes information pertaining to the

“symmetry types” of plane figures.

The Classification Theorem of Plane Isometries (Theorem 113) assures us

that symmetries are always reflections, translations, rotations or glide reflec-

tions. Consequently, we can systematically identify all symmetries of a given

plane figure. Now if we restrict our attention to those plane figures with “fi-

nitely generated” symmetry groups, there are exactly five classes of symmetry

types: (1) asymmetrical patterns, (2) patterns with only bilateral symmetry,

(3) rosettes, (4) frieze patterns and (5) wallpaper patterns. Quite surprisingly,

there are exactly seven symmetry types of frieze patterns and seventeen symme-

try types of wallpaper patterns. Although there are infinitely many symmetry

types of rosettes, their symmetry is simple and easy to understand. Further-

more, it is interesting to note that two rosettes with different symmetries have

non-isomorphic symmetry groups. So for rosettes, the symmetry group is a

perfect invariant. We begin our discussion with what little group theory we

need.

4.1 Groups of Isometries

In this section we introduce the group of isometries I and some of its subgroups.

Definition 134 A non-empty set  equipped with a binary operation ∗ is a
group if and only if the following properties are satisfied:

1. Closure: If   ∈  then  ∗  ∈ 

2. Associativity: If    ∈  then  ∗ ( ∗ ) = ( ∗ ) ∗ 

81
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3. Identity: For all  ∈  there exists an element  ∈  such that  ∗  =
 ∗  = 

4. Inverses: For each  ∈  there exists  ∈  such that  ∗  =  ∗  = 

A group  is abelian (or commutative) if and only if for all   ∈  ∗  =
 ∗ 

Theorem 135 The set I of all isometries is a group under function composi-
tion.

Proof. The work has already been done. Closure was proved in Exercise

1.1.3; the fact that composition of isometries is associative is a special case of

Exercise 1.1.4; the fact that  acts as an identity element in I was proved in
Exercise 1.1.5; and the existence of inverses was proved in Exercise 1.1.7.

Since two halfturns with distinct centers of rotation do not commute and

halfturns are elements of I, the group I is non-abelian. On the other hand,
some subsets of I (the translations for example) contain commuting elements.
When such a subset is a group in its own right, it is abelian.

Definition 136 Let ( ∗) be a group and let  be a non-empty subset of .

Then  is a subgroup of  if and only if ( ∗) is a group, i.e.,  is a group

under the operation inherited from 

Given a non-empty subset  of a group  is  itself a group under the

operation in ? One could appeal to the definition and check all four properties,

but it is sufficient to check just two.

Theorem 137 Let ( ∗) be a group and let  be a non-empty subset of .

Then  is a subgroup of  if and only if the following two properties hold:

a. Closure: If   ∈  then  ∗  ∈ 

b. Inverses: For every  ∈  there exists  ∈  such that  ∗  =  ∗  = 

Proof. If  is a subgroup of , properties (a) and (b) hold by definition.

Conversely, suppose that  is a non-empty subset of  in which properties

(a) and (b) hold. Associativity is inherited from  i.e., if    ∈  then as

elements of   ∗ ( ∗ ) = ( ∗ ) ∗ . Identity: Since  6= ∅ choose an element
 ∈  Then −1 ∈  since  has inverses by property (b) Furthermore,

operation ∗ is closed in  by property (a) so that  ∗ −1 ∈  But  ∗ −1 = 

since  and −1 are elements of  so  ∈  as required. Therefore  is a

subgroup of 

Proposition 138 The set T of all translations is an abelian group.

Proof. Closure and commutativity follow from Proposition ??; the existence

of inverses was proved in Exercise 7. Therefore T is an abelian subgroup of I
by Theorem 137, and consequently T is an abelian group.
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Proposition 139 The set R of all rotations about a point  is an abelian

group.

Proof. The proof is left as an exercise for the reader.

Exercises

1. Prove that the set R of all rotations about a point  is an abelian group.

2. Prove that the set E of all even isometries is a non-abelian group.

3. Prove that the set D of all dilatations is a non-abelian group.

4.2 Groups of Symmetries

In this section we observe that the set of symmetries of a given plane figure  is

a group, called the symmetry group of  Consequently, symmetry groups are

always subgroups of I (the group of all isometries).

Definition 140 A plane figure is a non-empty subset of the plane.

Definition 141 Let  be a plane figure. An isometry  is a symmetry of  if

and only if  fixes 

Theorem 142 Let  be a plane figure. The set of all symmetries of  is a

group, called the symmetry group of 

Proof. Let  be a plane figure and let S = { :  is a symmetry of }
Since the identity  ∈ S, the set S is a non-empty subset of I
Closure: Let   ∈ S By Exercise 1.1.3, the composition of isometries is an
isometry. So it suffices to check that  ◦  fixes  But since   ∈ S we have
( ◦ ) ( ) =  ( ( )) =  ( ) = 

Inverses: Let  ∈ S; we know that −1 ∈ I by Exercise 1.1.7; we must show
that −1 fixes  But −1 ( ) = −1 ( ( )) =

¡
−1 ◦ ¢ ( ) =  so that −1

also fixes  . Thus −1 ∈ S whenever  ∈ S.
Therefore S is a group by Theorem 137.

Example 143 (The Dihedral Group 3) Let  denote an equilateral triangle

positioned with its centroid at the origin and one vertex on the -axis. There

are exactly six symmetries of  , namely, the identity  two rotations 120 and

240 about the centroid, and three reflections   and  where   and 

have respective equations
√
3 − 3 = 0;  = 0; and √3 + 3 = 0 (see Figure

4.1)
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Figure 4.1: Lines of symmetry   and 

The multiplication table for composing these various symmetries appears in

Table 4.1 below. Closure holds by inspection. Furthermore, since each row and

column contains the identity element  in exactly one position, each element has

a unique inverse. By Theorem 137 these six symmetries form a group 3 called

the Dihedral Group of order 6.

◦  120 240   

  120 240   
120 120 240    
240 240  120   
     240 120
    120  240
    240 120 

Table 4.1: The Dihedral Group of Order 6

Look carefully at the upper left 4 × 4 block in Table 4.1 above. This is
the multiplication table for the rotations { 120 240} ⊂ 3 (the identity is

a rotation through angle 0); we shall denote this set by 3 Once again we see

that composition is closed in 3 and the inverse of each element in 3 is also in

3 Therefore 3 is a group; the symbol “3” stands for “cyclic group of order

3”.

Definition 144 A plane figure  has point symmetry if and only if some (non-

identity) rotation is a symmetry of  The center of a (non-identity) rotational

symmetry of  is called a point of symmetry for 

Definition 145 A plane figure  has line symmetry if and only if some reflec-

tion is a symmetry of  The reflecting line of a reflection symmetry of  is

called a line of symmetry for 
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Definition 146 A plane figure  has bilateral symmetry if and only if  has

a unique line of symmetry.

Corollary 147 The two symmetries of a figure with bilateral symmetry form

a group denoted by 1 The four symmetries of a non-square rectangle form a

group denoted by 2 For  ≥ 3 the 2 symmetries of a regular -gon form a

group denoted by 

Proof. A plane figure with bilateral symmetry has one line of symmetry

and one rotational symmetry (the identity). A non-square rhombus has two

lines of symmetry and two rotational symmetries about the centroid (including

the identity). If  ≥ 3 a regular -gon has  lines of symmetry and  rota-

tional symmetries about the centroid (including the identity). These sets of

symmetries form groups by Theorem 142.

Note that the two lines of symmetry of a rectangle and  lines of symmetry

of a regular -gon are concurrent at the centroid.

Definition 148 For  ≥ 1 the group  called the dihedral group of order 2,

consists of  rotational symmetries with the same center  and  reflection

symmetries whose axes are concurrent at 

Definition 149 Let  be a group, let  ∈ , and define 0 =  The group  is

cyclic if and only if for all  ∈  there is an element  ∈  (called a generator)

such that  =  for some  ∈ Z . A cyclic group with  ∞ elements is said

to be cyclic of order  A cyclic group  with infinitely many elements is said

to be infinite cyclic.

Example 150 Observe that the elements of 3 = { 120 240} can be ob-
tained as powers of either 120 or 240. For example,

120 = 1120; 240 = 2120; and  = 120 ◦ 240 = 3120

We say that 120 and 240 “generate” 3 Also observe that this 3 × 3 block is
symmetric with respect to the upper-left-to-lower-right diagonal. This indicates

that 3 is an abelian group. More generally, let  be a point, let  be a positive

integer and let  = 360

 Then for each integer ,  =  and  =

360 =  Therefore the group of rotations generated by  is cyclic with 

elements and is denoted by 

If  is the centroid of a regular -gon with  ≥ 3, the finite cyclic group
of rotations  introduced in Example 150 is the abelian subgroup of rotations

in  On the other hand,  can be realized as the symmetry group of a

3-gon constructed as follows: For  = 4 cut a square out of paper and draw

its diagonals, thereby subdividing the square into four congruent isosceles right

triangles with common vertex at the centroid of the square. From each of the

four vertices, cut along the diagonals stopping midway between the vertices

and the centroid. With the square positioned so that its edges are vertical or
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horizontal, fold the triangle at the top so that its right-hand vertex aligns with

the centroid of the square. Rotate the paper 90◦ and fold the triangle now at
the top in a similar way. Continue rotating and folding until you have what

looks like a flattened pinwheel with four paddles (see Figure 4.2). The outline

of this flattened pinwheel is a dodecagon (12-gon) whose symmetry group is 4
generated by either 90 or 270 For a general  one can construct a 3-gon

whose symmetry group is cyclic of order  by cutting and folding a regular

-gon in a similar way to obtain a pinwheel with  paddles.

Fold along the dotted linesCut along the dotted lines

Figure 4.2: A polygon whose symmetry group is cyclic of order 4.

Example 151 Let  be a non-identity translation; let  be any point and

let  =  ( )  Then  = PQ and 2 = PQ ◦ PQ = 2PQ Inductively,

 = −1 ◦  =  (−1)PQ ◦ PQ = PQ for each  ∈ N Furthermore,
()

−1
= (PQ)

−1
= −PQ = −, so distinct integer powers of  are dis-

tinct translations. It follows that the set  = { :  ∈ Z} is infinite. Note that
 is a group: inverses were discussed above and closure follows from the fact

that  ◦  = + Since every element of  is an integer power of  (or

−1)  is the infinite cyclic group generated by  (or −1).

Let  be a group and let  be a non-empty subset of  The symbol hi
denotes the set of all (finite) products of powers of elements of  and their

inverses. If  = {1 2   }  we abbreviate and write h1 2   i instead of
h{1 2   }i  Thus hi is automatically a subgroup of  since it is non-empty,
the group operation is closed and contains the inverse of each element in hi.
Definition 152 Let  be a group and let  be a non-empty subset of  The

subgroup hi is referred to as the subgroup of  generated by  A subset  ⊆
 is said to be a generating set for  if and only if  = hi  A group  is

finitely generated if and only if there exists a finite set  such that  = hi.
Example 153 A cyclic group  with generator  ∈  has the property that

 = hi  So {} is a generating set for 
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Example 154 Let  be a non-identity translation Then hi is infinite cyclic
since  6=  for all  6= 0 (see Example 151).

Example 155 Let  be the set of all reflections. Since every reflection is

its own inverse, hi consists of all (finite) products of reflections. By The

Fundamental Theorem of Transformational Plane Geometry every isometry of

the plane is a product of reflections. Therefore hi = I , i.e., the group of all
isometries, is infinitely generated by the set  of all reflections.

Example 156 Let  denote the set of all halfturns. Since the composition of

two halfturns is a translation, the composition of two translations is a trans-

lation, and every translation can be written as a composition of two halfturns,

H = hi is infinitely generated and is exactly the set of all translations and
halfturns.

Exercises

1. Recall that the six symmetries of an equilateral triangle form the dihedral

group 3 (see Example 143). Show that the set  = {120 } is a
generating set for 3 by writing each of the other four elements in 3

as a product of powers of elements of  and their inverses. Compute

all powers of each element in 3 and show that no single element alone

generates 3 Thus 3 is not cyclic.

2. The dihedral group 4 consists of the eight symmetries of a square. When

the square is positioned with its centroid at the origin and its vertices on

the axes, the origin is a point of symmetry and the lines  :  = 0

 :  =   :  = 0 and  :  = − are lines of symmetry. Construct a

multiplication table for 4 = { 90 180 270    } 

3. Find the symmetry group of

a. A parallelogram that is neither a rectangle nor a rhombus.

b. A rectangle that is not a square.

c. A kite that is not a rhombus.

4. Find the symmetry group of each capital letter of the alphabet written in

most symmetric form (write the letter “O” as an non-circular oval).

5. Determine the symmetry group of each figure below:
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6. The discussion following Example 150 describes how to construct a 3-

gon whose symmetry group is  where  ≥ 3 Alter this construction to
obtain a 2-gon whose symmetry group is 

7. Prove that a plane figure with bilateral symmetry has no points of symmetry.

8. Let  be a point. For which rotation angles Θ is

Θ

®
an infinite group?

9. Consider the dihedral group .

(a) Prove that  contains a halfturn if and only if  is even

(b) Prove that if  contains a halfturn , then  ◦  =  ◦  for all
 ∈ .

(c) Let  ≥ 3 and let  ∈  such that  6=  Prove that if  ◦ =  ◦
for all  ∈  then  is a halfturn. (The subgroup of elements that

commute with every element of a group  is called the center of .

Thus, if  contains a halfturn , the center of  is the subgroup

{ }.)
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4.3 The Rosette Groups

Definition 157 A rotational symmetry Θ of a plane figure  is minimal if

0◦  Θ◦ ≤ Φ◦ for all non-identity rotational symmetries Φ of 

Definition 158 A rosette is a plane figure  with the following properties:

1. There is a minimal rotational symmetry of 

2. All non-identity rotational symmetries of  have the same center.

The symmetry group of a rosette is called a rosette group.

Typically one thinks of a rosette as a pin-wheel (see Figures 4.2) or a flower

with -petals (See Figure 4.3). However, a regular polygon, a non-square rhom-

bus, a yin-yang symbol and a pair of perpendicular lines are rosettes as well.

Figure 4.3: A typical rosette.

In the early sixteenth century, Leonardo da Vinci determined all possible

finite groups of isometries; all but two of which are rosette groups. The two

exceptions are 1 which contains only the identity, and 1 which contains the

identity and one reflection. Note that 1 is isomorphic to the rosette group 2

which contains the identity and one halfturn.

Theorem 159 (Leonardo’s Theorem): Every finite group of isometries is

either  or  for some  ≥ 1

Proof. Let  be a finite group of isometries. Then  contains only rota-

tions and reflections since non-identity translations and glide reflections would

generate infinite subgroups. If  = {}  then  = 1 If  is a reflection and

 = { }  then  = 1 Suppose  is neither 1 nor 1 and let  be the

subset of rotations in 

Claim 1 : The non-identity rotations in  have the same center. On the con-

trary, suppose  contains non-identity rotations Θ and Φ with  6= 
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Let  0 = Φ (); then 0 6=  since  is not a fixed point. Conjugating

Θ by Φ gives Φ ◦ Θ ◦ −1Φ = 0Θ which is an element of  by

closure. Furthermore, 0Θ ◦ −1Θ = 0Θ ◦ −Θ ∈  again by closure. But

Θ + (−Θ) ∈ 0◦ so 0Θ ◦ −Θ is a non-identity translation by the Angle

Addition Theorem (92), contradicting the fact that  contains no translations.

Therefore  = .

Claim 2:  is a cyclic subgroup of  Recall that every congruence class of an-

gles Φ◦ has a unique class representative in the range 0 ≤ Φ  360 Write each

element in  uniquely in the form Φ with 0 ≤ Φ  360. Since  is finite,

there is a rotation Φ ∈  with the smallest positive rotation angle Φ Thus

if Ψ is not the identity element of  then Φ ≤ Ψ  360 by the minimality

of Φ and there is a positive integer  such that Φ ≤ Ψ ≤ ( + 1)Φ Thus

0 ≤ Ψ − Φ ≤ Φ Now if both of these inequalities were strict, Ψ − Φ would

be a positive rotation angle strictly less than Φ which violates the minimality

of Φ Therefore Ψ = Φ or Ψ = ( + 1)Φ i.e., Ψ = Φ for some integer 

Consequently, Ψ = Φ and  is cyclic, i.e., for some  ∈ N, there is a
rotation  ∈  such that  =

©
 2      = 

ª
= .

Now if =  we’re done; otherwise,  contains reflections. Let  = {1 2     } 
 ≥ 1 be the subset of reflections in .

Claim 3:  has the same number of reflections as rotations (including the iden-

tity). Choose a reflection  ∈  and note that the set  =
©
 ◦   ◦ 2      ◦ ª

contains  distinct odd isometries, which are reflections since  has no glide

reflections. Therefore  ⊆  and  ≤  On the other hand, the set

 = { ◦ 1  ◦ 2      ◦ } contains  distinct even isometries, which

are rotations since  has no translations. Therefore  ⊆  and  ≤  Thus

 =  as claimed.

Claim 4:  is the dihedral group . First,  =  ∪  =
©
 2     

ª ∪©
 ◦   ◦ 2      ◦ ª = h i  Second, given a non-identity element ◦ ∈

 = { ◦ 1  ◦ 2      ◦ }  there is a positive integer  ≤  such that

 =  ◦  Hence the axis of  and the axis of  intersect at  whenever
 ◦  6= . Thus all axes of reflection are concurrent at  so that  = .

An immediate consequence of Leonardo’s Theorem is the following:

Corollary 160 The rosette groups are either dihedral  or finite cyclic 

with  ≥ 2.
The symmetry group of a plane figure encodes some, but not all, of the geo-

metrical information it its group structure. For example, a butterfly has line

symmetry but no point symmetry whereas a yin-yang symbol has point sym-

metry but no line symmetry. Yet their symmetry groups, which contain very

different symmetries, are isomorphic since both groups are cyclic of order two.

Thus knowing that the symmetry group of some plane figure is cyclic, may not

be enough information to determine the precise symmetries its elements repre-

sent. Nevertheless, we can be sure that two plane figures with non-isomorphic
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symmetry groups have different “symmetry types.” Equivalently, two plane fig-

ures with the same symmetry type have isomorphic symmetry groups.

While the notion of “symmetry type” for general plane figures is quite subtle,

we can make the idea precise for rosettes. Let 1 and 2 be rosettes with the

same minimal positive rotation angle Θ and respective centers  and  Let

 = AB; then  ◦ Θ ◦ −1 = ()Θ = Θ and there is an isomorphism of

cyclic groups  :

Θ

®→ 
Θ

®
given by  () =  ◦◦−1 If 1 and 2 have

no lines symmetry, then  is an isomorphism of symmetry groups. On the other

hand, if the respective symmetry groups 1 and 2 have reflections  ∈ 1
and  ∈ 2 the lines  and  are either intersecting or parallel. If parallel,

 =  () and  ◦  ◦ −1 = () =  in which case  () =  ◦ ◦ −1 is an
isomorphism of symmetry groups. If  and  intersect and the angle measure

from  to  is Φ◦ then
¡
 ◦ Φ

¢ ◦  ◦ ¡ ◦ Φ¢−1 = (◦Φ)() =  and

 () =
¡
 ◦ Φ

¢ ◦  ◦ ¡ ◦ Φ¢−1 is an isomorphism of symmetry groups

Now if  is any group and  ∈ , the function  :  →  defined by

 () = −1 is an isomorphism, as the reader can easily check. In particular,
the map  defined above is the restriction to 1 of an isomorphism  : I → I
where I denotes the group of all plane isometries. We summarize this discussion
in the definitions that follows:

Definition 161 Let  be a group and let  ∈  The isomorphism  : → 

defined by  () = −1 is called an inner automorphism of 

Definition 162 Let 1 and 2 be rosettes with respective symmetry groups 1
and 2 Rosettes 1 and 2 have the same symmetry type if and only if there

is an inner automorphism of I that restricts to an isomorphism  : 1 → 2

Corollary 163 Two rosettes have the same symmetry type if and only if their

respective symmetry groups are isomorphic.

Exercises

1. Refer to Exercise 4 in Section 4.2 above. Which capital letters of the

alphabet written in most symmetry form are rosettes?

2. For  ≥ 2 the graph of the equation  = cos in polar coordinates is a

rosette.

a. Find the rosette group of the graph for each  ≥ 2
b. Explain why the graph of the equation  = cos  in polar coordinates

is not a rosette.

3. Find at least two rosettes in your campus architecture and determine their

rosette groups.



92 CHAPTER 4. SYMMETRY

4. Identify the rosette groups of the figures in the following that are rosettes:

5. Identify the rosette groups of the following rosettes:

4.4 The Frieze Groups

Frieze patterns are typically the familiar decorative borders often seen on walls

or facades extended infinitely far in either direction (See Figure 4.4).
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Figure 4.4: A typical frieze pattern.

In this section we identify all possible symmetries of frieze patterns and reach

the startling conclusion that every frieze pattern is one of seven distinctive

symmetry types.

Definition 164 A basic translation of a plane figure  is a non-identity trans-

lational symmetry with the following property: If w is a non-identity transla-

tional symmetry of  such that w =v then kvk ≤ kwk.

Definition 165 A frieze pattern is a plane figure  with the following proper-

ties:

1. There is a basic translation of 

2. All non-identity translational symmetries of  fix the same lines.

The symmetry group of a frieze pattern is called a frieze group.

Consider an row of equally spaced letter R’s extending infinitely far in either

direction (see Figure 4.5)

Figure 4.5: Frieze pattern 1

This frieze pattern, denoted by 1 has only translational symmetry. There are

two basic translations of 1–one shifting left; the other shifting right. Let  be

a basic translation; then  6=  for all  6= 0 and the frieze group of 1 is the
infinite cyclic group F1 = hi = { :  ∈ Z} 
The second frieze pattern 2 has a glide reflection symmetry (see Figure

4.6). Let  be a glide reflection such that 2 is a basic translation. Then  6= 

for all  6= 0 and 2 generates the translation subgroup. The frieze group of

2 is the infinite cyclic group F2 = hi = { :  ∈ Z}  Note that while the
elements of F1 and F2 are very different, the two groups are isomorphic.

Figure 4.6: Frieze pattern 2
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The third frieze pattern 3 has vertical line symmetry (see Figure 4.7). Let

 be a line of symmetry. Choose a line  such that  =  ◦ is a basic trans-
lation. Then  is also a line of symmetry since  =  ◦ and the composition
of symmetries is a symmetry (Theorem 142). In general, the reflection  ◦ 
is a symmetry for each  ∈ Z; these reflections determine all lines of symmetry.
The frieze group of 3 is F3 = h  i = { ◦  :  ∈ Z;  = 0 1} 

Figure 4.7: Frieze pattern 3

Frieze pattern 4 has halfturn symmetry (see Figure 4.8). Let  be a point of

symmetry. Choose a point  such that  =  ◦ is a basic translation. Then
 is also a point of symmetry since  =  ◦ . In general, the halfturn ◦
is a symmetry for each  ∈ Z; these halfturns determine all points of symmetry.
The frieze group of 4 is F4 = h   i = { ◦  :  ∈ Z;  = 0 1} 

Figure 4.8: Frieze pattern 4

The fifth frieze pattern 5 can be identified by its halfturn symmetry and

glide reflection symmetry (see Figure 4.9). In addition, 5 has vertical line

symmetry, but as we shall see, these symmetries can be obtained by composing

a glide reflection with a halfturn. Let  be a point of symmetry and let  be a

glide reflection such that 2 is a basic translation. Choose a point  such that

2 = ◦ . Then is also a point of symmetry since  = 2◦ . In general,
the halfturn 2 ◦  is a symmetry for each  ∈ Z; these halfturns determine
all points of symmetry. Now the line symmetries can be obtained from  and

 as follows: Let  be the horizontal axis of  let  be the vertical line through

 and let  be the vertical line such that  =  ◦  ◦  Then  =  ◦ 
so that  ◦  =  and the line symmetries are the reflections 

2 ◦  with
 ∈ Z. The frieze group of 5 is F5 = h  i = { ◦  :  ∈ Z;  = 0 1} 
Note that F3 F4 and F5 are isomorphic groups.
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Figure 4.9: Frieze pattern 5

In Figure 4.10 we picture the frieze pattern 6 which has a unique hor-

izontal line of symmetry  Thus the frieze group of 6 is F6 = h  i =
{ ◦  :  ∈ Z;  = 0 1}  The reader should check that F6 is abelian (see
Exercise 5). Consequently F6 is not isomorphic to groups F3 F4 and F5.

Figure 4.10: Frieze pattern 6

The final frieze group 7 has vertical line symmetry and a unique horizontal

line of symmetry  (see Figure 4.11). Let  be a vertical line of symmetry and let

 be a basic translation. Then the vertical line symmetries are the reflections

 ◦  with  ∈ Z and the point  =  ∩  is a point of symmetry since

 = ◦. Thus the halfturn symmetries are the halfturns ◦ with  ∈ Z.
The frieze group of 7 is F7 = h   i =

©
 ◦  ◦  :  ∈ Z;  = 0 1

ª


Figure 4.11: Frieze pattern 7

We collect the observations above as a theorem, however the proof that this

list exhausts all possibilities is omitted:



96 CHAPTER 4. SYMMETRY

Theorem 166 Every frieze group is one of the following:

F1 = hi F2 = hi
F3 = h  i F4 = h   i F5 = h  i
F6 = h  i
F7 = h   i

where  is a basic translation,  is a glide reflection such that 2 =  ,  is a

vertical line of symmetry,  is a point of symmetry and  is the unique horizontal

line of symmetry.

The following flowchart can be used to identify the frieze group associated

with a particular frieze pattern:

Figure 4.12. Recognition flowchart for frieze patterns

Exercises

1. Find at least two friezes in your campus architecture and identify their

frieze groups.

2. Find the frieze group for the pattern in Figure 4.4.

3. Prove that frieze group F6 is abelian.
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4. Identify the frieze groups for the following:

5. Identify the frieze groups of the following friezes taken from Theodore

Menten’s Japanese Border Designs in the Dover Pictorial Archive Series:
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6. Identify the frieze groups for the following figures that are friezes:

4.5 The Wallpaper Groups

A tessellation (or tiling) of the plane is a collection of plane figures that fills the

plane with no overlaps and no gaps. A “wallpaper pattern” is a special kind of

tessellation, which we now define.

Definition 167 Translations v and w are independent if and only if v and

w are linearly independent.

Definition 168 A wallpaper pattern is a plane figure with independent basic

translations in two directions. A wallpaper group is the symmetry group of a

wallpaper pattern.
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Figure 4.19: A typical wallpaper pattern.

Definition 169 Let  be a wallpaper pattern with independent basic transla-

tions 1 and 2. Given any point , let  = 1 ()   = 2 ()  and  =

2 ()  The unit cell with respect to  1 and 2 is the plane region bounded

by parallelogram ¤. The translation lattice determined by  1 and 2
is the set of points 12 () = { (2 ◦ 1 ) ()|  ∈ Z} ; this lattice is square,
rectangular, or rhombic if and only if the unit cell with respect to , 1 and 2
is square, rectangular or rhombic.




Figure 4.20: A typical translation lattice and unit cell.

Proposition 170 Let  be a wallpaper pattern with independent basic trans-

lations 1 and 2. If  is any translational symmetry of  there exist integers

 and  such that  = 2 ◦ 1 

Proof. Let  be any point in a wallpaper pattern and let  be a transla-

tional symmetry of  Then  fixes the translation lattice 12 (), and there

exist integers  and  such that  () = (2 ◦ 1 ) () 
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Definition 171 Let   1. A point  is an -center of a wallpaper pattern if

and only if the subgroup of rotational symmetries centered at  is .

For example, each vertex of the hexagonal tessellation pictured in Figure 4.14

is a 3-center.

Whereas our goal is to emphasize visual aspects and recognition techniques,

we present a recognition algorithm but omit the proof of the fact that every

wallpaper pattern is one of the seventeen specified types.

Theorem 172 The symmetries of a wallpaper pattern fix the set of -centers,

i.e., if  is an -center of  and  is a symmetry of  then  ( ) is an

-center of 

Proof. Let  be a wallpaper pattern with symmetry group W and let be

 an -center of  Since  is the subgroup of rotational symmetries with

center  there is a smallest positive real number Θ such that Θ = . Now

if  ∈ W and  =  ( )  then  ◦ Θ ◦ −1 = ±Θ ∈ W by closure and

±Θ =
¡
 ◦ Θ ◦ −1

¢
=  ◦ Θ ◦ −1 =  But Θ ∈ W if and only if

−Θ ∈ W so Θ = . Thus  is an -center for some  ≤  By the same

reasoning,
¡
−1

¢◦Θ ◦ ¡−1¢−1 = ±Θ ∈W implies that Θ = , in which

case  is an -center with  ≤  Therefore  =  and  is an -center as

claimed.

Two -centers in a wallpaper patterns cannot be arbitrarily close to one

another.

Definition 173 Let  be a translation with glide vector v The length of  ,

denoted by kk  is the norm kvk.
Theorem 174 Let be a wallpaper pattern and let  be a translational symme-

try of shortest length. If  and  are distinct -centers of , then  ≥ 1
2
kk 

Proof. Let   1 and consider distinct -centers  and  Then 360
and 360 are elements of the wallpaper group W By closure and the Angle

Addition Theorem, 360◦−360 is a non-identity translation inW Since

every translation in W is generated by two basic translations 1 and 2, there

exist integers  and  not both zero, such that 360 ◦ −360 = 

2 ◦  1

or equivalently,

360 = 

2 ◦  1 ◦ 360

Consider the point  in the translation lattice determined by  given by

 =
³


2 ◦  1

´
() =

³


2 ◦  1

´³
360 ()

´
= 360 () 

Note that  6=  since  and  are not both zero. Thus  ≥ kk  Now
if  = 2  =  () ; and if   2 4 is isosceles. In either case,

 =   But  +  ≥  by the triangle inequality so it follows

that 2 ≥ kk 
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The next theorem, which was first proved by the Englishman W. Barlow

in the late 1800’s, is quite surprising. It tells us that wallpaper patterns can-

not have 5-centers; consequently, crystalline structures cannot have pentagonal

symmetry.

Theorem 175 (The Crystallographic Restriction) If  is an -center of a wall-

paper pattern  , then  ∈ {2 3 4 6} 

Proof. Let  be an -center of  and let  be a translation of shortest

length. We first show that  has an -center  6=  whose distance from

 is a minimum. Suppose no such  exists and consider any -center 1 6=
Since 1 is not a minimum, there is an -center 2 6=  such that 1 

2 Continuing in this manner, then there is an infinite sequence of -centers

{ 6= } such that 1  2  · · ·  But  ≥ 1
2
kk for all  by Theorem

174. Hence {} is a strictly decreasing sequence of positive real numbers
converging to  ≥ 1

2
kk  i.e., given   0 there is a positive integer  such

that if    then      +  Consequently, infinitely many -centers

 lie within  of the circle centered at  of radius  which is impossible

since  ≥ 1
2
kk for all   So choose an -center  6=  such that  is

a minimum and let  = 360 ( ) and let  = 360 ()  Then  and 

are -centers by Theorem 172, and  =  =  If  =  then 4 is

equilateral in which case the rotation angle is 60◦ and  = 6 If  6=  then by

the choice of   ≥  =  =  in which case the rotation angle is at

least 90◦ and  ≤ 4 Therefore  is either 2 3 4 or 6.

Corollary 176 A wallpaper pattern with a 4-center has no 3 or 6-centers.

Proof. If  is a 3-center and  is a 4-center of a wallpaper pattern  , the

corresponding wallpaper group W contains the rotations 120 and −90. By
closure, W also contains the 30◦ rotation 120 ◦ −90 which generates 12
Therefore there is an -center of  with  ≥ 12 But this contradicts Theorem
175. Similarly, if  is a 4-center and  is a 6-center of  , there is also an

-center of  with  ≥ 12 since −60 ◦ 90 is a 30◦ rotation.
In addition to translational symmetry, wallpaper patterns can have line sym-

metry, glide reflection symmetry, and 180◦ 120◦ 90◦ or 60◦ rotational symme-
try. Since the only rotational symmetries in a frieze group are halfturns, it is

not surprising to find more wallpaper groups than frieze groups. In fact, there

are seventeen!

Throughout this discussion,  denotes a wallpaper pattern. We use the

international standard notation to denote the various wallpaper groups. Each

symbol is a string of letters and integers selected from    and 1 2 3 4 6

The letter  stands for primitive translation lattice. The points in a primitive

translation lattice are the vertices of parallelograms with no interior points of

symmetry. When a point of symmetry lies at the center of some unit cell, we

use the letter . The letter  stands for mirror and indicates lines of symmetry;



102 CHAPTER 4. SYMMETRY

the letter  indicates glide reflection symmetry. Integers indicate the maximum

order of the rotational symmetries of 

There are four symmetry types of wallpaper patterns with no -centers.

These are analyzed as follows: If  has no line symmetry or glide reflection

symmetry, the corresponding wallpaper group consists only of translations and

is denoted by 1 If  has glide reflection symmetry but no lines of symmetry,

the corresponding wallpaper group is denoted by . There are two ways that

both line symmetry and glide reflection symmetry can appear in  : (1) the

axis of some glide reflection symmetry is not a line of symmetry and (2) the

axis of every glide reflection symmetry is a line of symmetry. The corresponding

wallpaper groups are denoted by  and  respectively.

There are five symmetry types whose -centers are all 2-centers. If  has

neither lines of symmetry nor glide reflection symmetries, the corresponding

wallpaper group is denoted by 2 If  has no line symmetry but has glide

reflection symmetry, the corresponding group is denoted by . If  has

parallel lines of symmetry, the corresponding group is denoted by  If 

has lines of symmetry in two directions, there are two ways to configure them

relative to the 2-centers in : (1) all 2-centers lie on a line of symmetry and (2)

not all 2-centers lie on a line of symmetry. The corresponding wallpaper groups

are denoted by  and  respectively.

Three wallpaper patterns have -centers whose smallest rotation angle is

90◦ Those with no lines of symmetry have wallpaper group 4 Those with

lines of symmetry in four directions have wallpaper group 4; other patterns

with lines of symmetry have wallpaper group 4

Three symmetry types have -centers whose smallest rotation angle is 120◦
Those with no lines of symmetry have wallpaper group 3 Those whose 3-

centers lie on lines of symmetry have wallpaper group 31; those with some

3-centers off lines of symmetry have wallpaper group 31

Finally, two symmetry types have -centers whose smallest rotation angle is

60◦ Those with line symmetry have wallpaper group 6; those with no line

symmetry have wallpaper group 6
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Theorem 177 Every wallpaper group is one of the following:

1 2 4 3 6

  4 31 6

  4 31
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The following flowchart can be used to identify the wallpaper group associ-

ated with a particular wallpaper pattern:

Example 178 Here are some wallpaper patterns from around the world. Try

your hand at identifying their respective wallpaper groups.
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We conclude our discussion of wall paper patterns with a brief look at “edge

tessellations”, which have a simple and quite beautiful classification.

Definition 179 An edge tessellation is tessellation of the plane is generated by

reflecting a polygon in its edges.

Obviously, regular hexigons, rectangles, and equilateral, 60-right and isosce-

les right triangles generate edge tessellations, but are there others? The com-

plete answer was discovered by Millersville University students Andrew Hall,
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Joshua York, and Matthew Kirby in the spring of 2009, and we present it here

as a theorem. The proof, which follows easily from the Crystallographic Re-

striction, is left to the reader (see Exercise 8 at the end of this section).

Theorem 180 A polygon generating a edge tessellation is one of the following

eight types: a rectangle; an equilateral, 60-right, isosceles right, or 120-isosceles

triangle; a 120-rhombus; a 60-90-120 kite; or a regular hexagon.

Figure 4.13. Edge tessellations generated by non-obtuse polygons.

Figure 4.14. Edge tessellations generated by obtuse polygons.
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Edge tessellations represent 3 of the 17 symmetry types of wallpaper patterns.

Non-square rectangles generate patterns of type  isosceles right triangles

and squares generate patterns of type 4 and the other six edge tessellations

have type 6.

Exercises

1. Identify the wallpaper group for the pattern in Figure 4.12.

2. Find at least two different wallpaper patterns on your campus and identify

their wallpaper groups.

3. Identify the wallpaper groups for the following patterns.

4. Prove that if  and  are distinct points of symmetry for a plane figure

 the symmetry group of  contains a non-identity translation, and con-

sequently has infinite order. (Hint: Consider all possible combinations of

 and  such that  is an -center and  is an -center.)
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5. Identify the wallpaper groups for the following patterns:
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6. Identify the wallpaper groups for the following patterns:
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7. Identify the wallpaper groups for the following patterns:

8. Prove Theorem 5.2: A polygon generating a edge tessellation is one of the

following eight types: a rectangle; an equilateral, 60-right, isosceles right,

or 120-isosceles triangle; a 120-rhombus; a 60-90-120 kite; or a regular

hexagon. (Hint: Using Crystallographic Restriction and the interior angle

sum of a -gon, set up and solve a system of two linear equations.whose
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unknowns are the number of 30◦ 45◦ 60◦, 90◦ and 120◦ interior angles
in the -gon.)
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Chapter 5

Similarity

In this chapter we consider transformations that magnify or stretch the plane.

Such transformations are called “similarities” or “size transformations.” One

uses similarities to relate two similar triangles in much the same way one uses

isometries to relate two congruent triangles. Particularly important are the

“stretch” transformations, which linearly expand the plane radially outward

from some fixed point. Stretch transformations are an essential component of

every non-isometric similarity. Indeed, we shall prove that every similarity is one

of the following four distinct types: an isometry, a stretch, a stretch reflection

or a stretch rotation. We begin with another look at the family of dilatations,

which we introduced in Section 1.3.

5.1 Plane Similarities

Definition 181 Let   0 A similarity of ratio  is a transformation  : R2 →
R2 with the following property: Given points  and  their images  0 = ( )

and 0 = () satisfy  00 = 

Note that a similarity of ratio 1 is an isometry. In particular, if a similar-

ity  has distinct fixed points  and  then  0 =  and 0 =  so that

 00 =  the ratio of similarity  = 1 and  is the identity or a reflection..

Furthermore, if has three non-collinear fixed points, then  =  by Theorem

72. This proves:

Proposition 182 A similarity of ratio 1 is an isometry; a similarity with two

or more distinct fixed points is a reflection or the identity; a similarity with three

non-collinear fixed points is the identity.

113
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Figure 5.1: A similarity  of ratio 2.

Proposition 183 The set of all similarities is a group under composition of

functions.

Proof. The proof is left to the reader.

Corollary 184 (Three Points Theorem for Similarities) Two similarities

that agree on three non-collinear points are equal.

Proof. Let  and  be similarities, and let   and  be points such that

 () =  ()   () =  ()  and  () =  ()  (5.1)

By applying −1 to both sides of the equations in line (5.1) we obtain¡
−1 ◦ ¢ () = 

¡
−1 ◦ ¢ () =  and

¡
−1 ◦ ¢ () = 

But −1 ◦  is a similarity by 183, hence −1 ◦  =  by Proposition 182, and

 = 

The proof of our next result is left as an exercise following Section 3.

Definition 185 Let  be a point and let   0 A stretch of ratio  about  is

the transformation  : R
2 → R2 with the following property: If  is a point,

then  0 =  ( ) is the unique point on
−−→
 such that  0 = 

Note that if 0 =  ()  then  0 =  = 0 and 0 = 
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Figure 5.2: A stretch about  of ratio 3

Of course, the identity is a stretch of ratio 1 about every point  Further-

more, the equations of a stretch about the origin are

 :

½
0 = 

0 = 

To obtain the equations of a stretch about  =
£



¤
 conjugate  by the

translation OC i.e.,

 = OC ◦  ◦ −1OC
Composing equations gives

 :

½
0 = + (1− ) 

0 =  + (1− ) 

Proposition 186 A stretch preserves orientation.

Proof. First observe that a stretch about the origin preserves orientation.

Choose an orientation
n
u =

£
1
2

¤
v =

£
1
2

¤o
of R2 Then u0 = 

³£
1
2

¤´
=£

1
2

¤
and v0 = 

³£
1
2

¤´
=
£
1
2

¤
 But det [u0|v0] = det

∙
1 1
2 2

¸
=

2 det

∙
1 1
2 2

¸
= 2 det [u|v]  Since det [u0|v0] and det [u|v] have the same

sign,  preserves orientation. A general stretch  = OP ◦  ◦ −1OP pre-
serves orientation since translations preserve oritention by Exercise 11 in Section

215.

Exercises

1. One can use the following procedure to determine the height of an object:

Place a mirror flat on the ground and move back until you can see the top

of the object in the mirror. Explain how this works.
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2. Find the ratio of similarity  for a similarity  such that 
¡£
1
2

¤¢
=
£
0
0

¤
and


¡£
3
4

¤¢
=
£
3
4

¤


3. Find the point  and ratio of similarity  such that 

³£



¤´
=
£
3+7
3−5

¤


4. Prove that a stretch is bijective.

5. If  is a similarity of ratio  and  is a similarity of ratio  prove that

 ◦  is a similarity of ratio 

6. If  is a similarity of ratio  prove that −1 is a similarity of ratio 1



7. Prove Proposition 183: The set of all similarities is a group under compo-

sition of functions.

8. If  is a similarity of ratio  and   and  are distinct non-collinear

points, let 0 =  ()  0 =  ()  and 0 =  ()  Prove that ∠ ∼=
∠000.

9. Prove that similarities preserve betweenness.

5.2 Classification of Dilatations

In this section we observe that every dilatation is either a translation, a stretch

or a stretch followed by a halfturn. We begin with a review of some facts about

similar triangles.

Definition 187 Two triangles 4 and 4000 are similar, written
4 ∼ 400 0 if and only if all three pairs of corresponding angles are
congruent.

Our next two theorems state some important facts about similar triangles.

Theorem 188 (AA) Two triangles are similar if and only if two pairs of cor-

responding angles are congruent.

The proof of Theorem 188 follows immediately from the fact that the interior

angle sum of a triangle is an element of 180◦.

Theorem 189 (Similar Triangles) Two triangles are similar if and only if

the ratios of the lengths of their corresponding sides are equal, i.e.,

4 ∼ 4000 if and only if
00


=

00


=

0 0
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Proof. Given 4 and 400 0 let  = 00 and consider the

points  =  () and  =  ()  Since  is a similarity of ratio 

we have  =  = 00  =  and  = ; since  is a

dilatation we have
←→
k←→ and corresponding angles are congruent: ∠ ∼= ∠

and ∠ ∼= ∠.
If 4 ∼ 400 0 then ∠ ∼= ∠0 and ∠ ∼= ∠ 0 by definition, so

that ∠ ∼= ∠0 and ∠ ∼= ∠0 But  = 00 implies 4 ∼= 4000

by SAA. Thus 00 =  =  and 0 0 =  =  by CPCTC so that

 = 00 = 0 0 = 0 0

If 00 = 0 0 = 0 0, then  =  = 00  =

 = 00 and  =  = 0 0 so that 4 ∼= 400 0 by SSS.
Therefore ∠ ∼= ∠0 ∠ ∼= ∠ ∼= ∠0 and ∠ ∼= ∠ ∼= ∠ 0 by CPCTC, and
4 ∼ 400 0 by definition.

Some authors use Theorem 189 as an alternative definition of similar trian-

gles. Our next theorem, which is a standard result from Euclidean geometry,

will be applied in the proof of Proposition 191:

Theorem 190 Given 4 00 let  be a point on  0 and let  be a point on

0. Then  divides  0 and 0 proportionally if and only if
←→
 k←−→ 00

Proof. If
←→
 k ←−→ 00 then ∠ ∼= ∠ 00 and ∠ ∼= ∠0 0

(corresponding angles). Thus 4 00 ∼ 4 by AA so that

=
0




But  0 =  +  0 and 0 = +0; therefore

 0


=

 0 − 


=

 0


− 1 = 0


− 1 = 0 − 


=

0



so that  divides sides  0 and 0 of 4 00 proportionally. Conversely,
assume that

 0


=

0


(5.2)

and construct the line through 0 parallel to
←→
 intersecting

←−→
 0 at point 

(see Figure 5.3).
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Figure 5.3.

Then ∠ ∼= ∠0 and ∠ ∼= ∠0 (corresponding angles) so that

40 ∼ 4 by AA and




=

0




But  =  +  and 0 = +0; therefore




=

− 


=




− 1 = 0


− 1 = 0 − 


=

0


 (5.3)

Combining equations (5.2) and (5.3) we have

 0


=

0


=





so that  0 =  =  0+ 0 and  0 = 0 Therefore  0 =  as desired.

Proposition 191 Let  be a point and let   0 Then  is both a dilatation

and a similarity of ratio .

Proof. Let  be a line. If  is on  then () =  by definition, and

()k. So assume  is off  and choose distinct points   and  on 

(see Figure 5.4).

Figure 5.4.
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By definition,  0 =  0 =  and 0 =   If   1 then

 00 divides sides  and  in 4 proportionally; on the other hand,

if   1 then  divides sides  0 and 0 in 4 00 proportionally. In
either case,

←→
k←−→ 00 by Theorem 190. Similarly,

←→
k←−→ 00 But

←−→
 00k←−→ 00

implies that  0 0 and 0 are collinear. But  =
←→
 =

←→
 and () =←−→

 00 =
←−→
 00; therefore  is a collineation. But  is also a dilatation

since k(). Now consider parallel lines
←→
 and

←−→
 00 cut by transversal

←→
 Since corresponding angles are equal, 4 ∼ 4 00 by  But

the lengths of corresponding sides in similar triangles are proportional, hence

 00 =  0 =  and  00 =  Therefore  is a similarity of

ratio  as claimed.

Definition 192 Let  be a point and let   0. A dilation about  of ratio ,

denoted by  is either a stretch about  of ratio  or a stretch about  of

ratio  followed by a halfturn about .

Note that the identity and all halfturns are dilations of ratio 1. In general,

if  −  − there is a positive real number  such that  =  ( ) 

Theorem 193 Let  be a point and let   0. Then  is both a dilatation

and a similarity of ratio .

Proof. If  =  the conclusion is the statement in Proposition 191. So

assume that  =  ◦  A halfturn is an isometry and hence a similarity;
it is also a dilatation by Proposition 58, part 2. So on one hand,  ◦  is a
composition of dilatations, which is a dilatation, and on the other hand  ◦
is a composition of similarities, which is a similarity by Proposition 183. Proof

of the fact that  ◦  is a similarity of ratio  is left to the reader.

Theorem 194 If
←→
 and

←→
 are distinct parallels, there is a unique dilatation

 such that  = () and  = ()

Proof. First, we define a dilatation with the required property. Let  =

AD() let  =  and consider the dilation  such that  = ()

Then

( ◦ AD)() = () =  and ( ◦ AD)() = () = 

Since AD and  are dilatations,  ◦ AD is a dilatation with the required
property. For uniqueness, let  be any dilatation such that () =  and

() =  Let  be a point off
←→
 To locate  0 = ( ) note that  0 is on

the line  through  parallel to
←→
 and also on the line  through  parallel

to
←→
 (see Figure 5.5). Hence  0 =  ∩ Let  be a point on

←→
 distinct

from  and let 0 = () Then 0 is on the line
←→
 and also on the line 

through  0 parallel to
←→
 Hence 0 =

←→
 ∩  In either case,  0 and 0 are
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uniquely determined by the given points    and  Thus every similarity

with the required property sends  to  0 and  to 0 and in particular,

(◦AD)() = () (◦AD)( ) = ( ) and (◦AD)() = ()

so that  =  ◦ AD by Corollary 184.

Figure 5.5.

Proposition 195 If  is a dilatation  is a point distinct from  = () then

 fixes
←→
.

Proof. Let  = () and note that
←→
 k ←→ since  is a dilatation.

Therefore
←→
 =

←→
 = 

³←→


´


We are now able to determine all of the dilatations.

Theorem 196 Every dilatation is a translation, halfturn or dilation.

Proof. Let  be a dilatation. If  is an isometry, it either a translation or

a halfturn by Theorem 47, Proposition 58, and Exercise 10 in Section 3.1. The

identity, which is a trivial translation, is also a dilatation, so assume that  6= 

Choose a line  distinct from 0 = () its parallel image, and choose distinct

points  and  on  Since dilatations are collineations and collineations are

bijective, 0 = () and 0 = () are distinct points on 0 and furthermore,
 is the unique dilatation such that 0 = () and 0 = () by Theorem 194.

We consider two cases:

Case 1: Assume
←−→
0k←−→0 Then ¤00 is a parallelogram so that

AA0() = 0 and AA0() = 0
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Since translations are dilatations by Theorem 47,  = AA0 by uniqueness in

Theorem 194

Case 2: Assume
←−→
0∩←−→0 =  Then 

³←−→
0

´
∩

³←−→
0

´
=
←−→
0∩←−→0 =  by

Proposition 195, and it follows that  () = . Since
←→
 6= ←−→00 by assump-

tion,  is off
←→
; since  0 and  are collinear  is also off

←−→
00 (see Fig-

ures 6.5 and 6.6). Thus 4 ∼ 400 (by ) with ratio of similarity

 = 0 = 0

Subcase 2a: Assume  = 1 Then  is the midpoint of 0 and 0 in which
case  () = 0 and  () = 0 Since halfturns are dilatations by Proposi-
tion 58,  =  by uniqueness in Theorem 194 (see Figure 5.6).

Figure 5.6.

Subcase 2b: Assume  6= 1 Let  = () and  = (); then  is the

unique point on
−→
 such that  =  and  is the unique point on

−−→


such that  =  If  −  − 0 then  is the midpoint of 0 and
0 in which case

¡
 ◦ 

¢
() = 0 and

¡
 ◦ 

¢
() = 0. Otherwise,

() = 0 and () = 0 Thus  =  by Theorem 193 and uniqueness

in Theorem 194 (see Figure 5.7).

Figure 5.7.

Exercises

1. Let  be a point and let   0 Prove that the dilation  ◦  has ratio
.
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2. Let  =
£
0
0

¤
  =

£
1
1

¤
 0 =

£
0
2

¤
 0 =

£
2
4

¤
 Identify the (unique) dilatation 

such that  () = 0 and  () = 0 as a translation, stretch or dilation.
Determine the ratio of similarity and any fixed points.

3. Prove the AA Theorem for similarity: Two triangles are similar if and only

if two pairs of corresponding angles are congruent.

5.3 Similarities as an Isometry and a Stretch

Given two congruent triangles, the Classification Theorem for Plane Isometries

(Theorem 109) tells us there is exactly one isometry that maps one of two con-

gruent triangles onto the other. A similar statement, which appears as Theorem

197 below, can be made for a pair of similar triangles, namely, there is exactly

one similarity that maps one of two similar triangles onto the other. In this sec-

tion we also observe that every similarity is a stretch followed by an isometry.

This important fact will lead to the complete classification of all similarities in

the next section.

Theorem 197 4 ∼ 400 0 if and only if there is a unique similarity
 such that 0 = () 0 = () and 0 = ()

Proof. Given similar triangles 4 and 4000 we first define a sim-
ilarity that sends  to 0  to 0 and  to 0 then prove its uniqueness.
The ratio of similarity  = 00; let  = () and  = () Then

 =  = 00 and  =  = 0 0 Furthermore, ∠ = ∠ ∼=
∠000 since corresponding angles are congruent and 4 ∼= 400 0 by
 Let  be the isometry that maps 4 congruently onto 400 0
Then  ◦  is a similarity such that

( ◦ )() = () = 0

( ◦ )() = () = 0

( ◦ )() = () = 0

For uniqueness, let  be any similarity such that 0 = (), 0 = () and

0 = () Then

( ◦ )() = () ( ◦ )() = () and ( ◦ )() = ()

so that  =  ◦  by Corollary 184.
Conversely, suppose that  is a similarity of ratio  such that 0 = ()

0 = () and 0 = () Then by definition, 00 =  0 0 = 

and 00 =  so that



00 =


00
=



 00


and 4 ∼ 400 0 by Theorem 189.
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Definition 198 Two plane figures 1 and 2 are similar if and only if there is

a similarity  such that (1) = 2

Note that if 1 and 2 in Definition 198 are lines, infinitely many similarities

 satisfy (1) = 2 Thus  is not necessarily unique. The proof of Theorem

197 seems to suggest that a similarity is a stretch about some point  followed

by an isometry. In fact, this is true and very important.

Theorem 199 If  is a similarity of ratio  and  is any point, there exists

an isometry  such that

 =  ◦ 

Proof. Let  be a similarity of ratio  and let  be any arbitrarily chosen

point. Then  = ◦−1 is an isometry since −1 has ratio 1 and the composition
 ◦ −1 has ratio  · 1 = 1 by Exercise 5. Therefore  =  ◦ 

Definition 200 A stretch rotation is a non-identity stretch about some point

 followed by a non-identity rotation about 

For example, a stretch rotation with rotation angle 180 is a particular kind

of dilation.

Definition 201 A stretch reflection is a non-identity stretch about some point

 followed by a reflection in some line through 

Exercises

1. Which points and lines are fixed by a stretch rotation?

2. Which points and lines are fixed by a stretch reflection?

3. Prove that similarities are bijective. (HINT: Apply Exercise 4 in Section

5.1 and Theorem 199.)

4. Let  be a point, let Θ ∈ R, and let   0 Prove that Θ ◦  =
 ◦ Θ

5. Let  be a line, let  be a point on  and let   0 Prove that  ◦  =
 ◦ 
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5.4 Classification of Similarities

In this section we prove our premier result—the Classification Theorem for Sim-

ilarities, which states that every similarity is either an isometry, a stretch, a

stretch reflection, or a stretch rotation. The Classification Theorem is a conse-

quence of our next theorem.

Theorem 202 Every non-isometric similarity has a fixed point.

Proof. Let  be a similarity. If  is a non-isometric dilatation, it is a

dilation by Theorem 196. Since a dilation has a fixed point, it is sufficient to

show that the statement holds when  is neither an isometry nor a dilatation.

Choose a line  that intersects its image 0 = () at the point  =  ∩ 0 and
let 0 = () If 0 =  then  has a fixed point as claimed. So assume that

0 6= ; then 0 is on 0 and off  Let  be the line through 0 parallel to
; since 0 is off  the lines  and  are distinct parallels. Let 0 = (). I

claim that 0 and 0 are distinct parallels. If not, either 0 ∦ 0 or 0 = 0, but
in either case there exist points 0 ∈ 0 ∩ 0 1 on  and 2 on  such that

 (1) =  (2) = 0 But  and  are distinct parallels and  is injective, so

this is impossible. Let  =  ∩0 and let 0 = () Then 0 is on 0 and
0 6= 0 since 0 is on 0 If 0 =  then  has a fixed point as claimed. So

assume that 0 6=  Then 0 =
←−→
0 0 =

←−→
0 and

←−→
0k←−→0 If

←→
k←−→00 as

in Figure 5.8, then ¤00 is a parallelogram and  = 00 in which case
 is an isometry, contrary to our hypothesis.

Figure 5.8.

Thus lines
←→
 and

←−→
00 must intersect at some point  off parallels

←−→
0 and←−→

0. Let  0 =  ( ) ; if  0 =  the proof is complete. Either  −  − 

− −  or  −− So consider three cases:

Case 1 : Assume −  − as in Figure 5.9.
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Figure 5.9.

First, 0− 0−0 since  preserves betweenness (see Exercise 9 in Section 5.1).

Second, 0 −  −0 since
←−→
0k←−→0. But 40 ∼ 40 by  so that




=

0
0

( ). Let  be the ratio of ; then




=




=

0 0

 00

so that
0
0 =

0 0

 00  (5.4)

I claim that 0 = 0 0 in which case  =  0. But if 0  0 0 then
0
 00 

0 0
 00 =

0
0 implies 

0   00 so that 00 = 0 + 0  0 0 +
 00 = 00 which is a contradiction, and similarly for 0  0 0.

The cases −− and  −− are similar and left as exercises for the

reader.

We can now prove our premier result:

Theorem 203 (Classification of Plane Similarities) A similarity is ex-

actly one of the following: an isometry, a stretch, a stretch rotation, or a stretch

reflection.

Proof. If  is a non-isometric similarity, then  has a fixed point  by

Theorem 202. By Theorem 199, there is an isometry  and a stretch  about

 such that  =  ◦  or equivalently,  ◦ −1 =  But −1 is also a stretch
about  so

() = ( ◦ −1)() = () = 

Since the isometry  has fixed point ,  is one of the following: the identity,

a rotation about  or a reflection in some line passing through  Hence  is

one of the following: a stretch, a stretch rotation, or a stretch reflection. Proof

of the fact that  is exactly one of these four is left to the reader.
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Definition 204 A direct similarity preserves orientation; an opposite similar-

ity reverses orientation.

In light of Proposition 186 and Theorem 203, direct similarities are even

isometries, stretches and stretch rotations and opposite similarities are odd

isometries and stretch reflections. Thus the equations of a similarity are easy

to obtain.

Theorem 205 A direct similarity has equations of form½
0 = −  + 

0 = +  + 
 2 + 2  0;

an opposite similarity has equations of form½
0 = −  + 

0 = −−  + 
 2 + 2  0

Conversely, a transformation with equations of either form is a similarity.

Proof. One can easily check that an even isometry has equations½
0 = −  + 

0 = +  + 
 2 + 2 = 1;

and an odd isometry has equations½
0 = −  + 

0 = −−  + 
 2 + 2 = 1

By Theorem 203, every non-isometric similarity is a stretch, a stretch reflection

or a stretch rotation. The equations of a stretch of ratio  have the form½
0 = + 

0 =  + 
   0

Composing the equations of a reflection or a rotation with those of a stretch

gives the result. The converse is left to the reader.

We conclude with some observations about conjugation by a stretch.

Theorem 206 If  and  are arbitrary points,   0 and Θ ∈ 0◦, then

 ◦ Θ ◦ −1 = ()Θ

Proof. Note that  =  ◦ Θ ◦ −1 is an isometry since it is a simi-
larity of ratio 1 Let  0 =  ()  Then  ( 0) =

¡
 ◦ Θ ◦ −1

¢
(0) =¡

 ◦ Θ
¢
() =  () =  0 so  fixes  0 I claim  0 is the unique fixed
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point of  If  is any fixed point of , then  =
¡
 ◦ Θ ◦ −1

¢
() im-

plies −1 () = Θ
¡
−1 ()

¢
 Hence −1 () =  and  =  () =  0

proving the claim. Therefore  is a rotation about  0. Let 0 be a point dis-
tinct from  0 and let 0 =  (0)  Let  = −1 (

0) and  = −1 (
0)  Then

0 =
¡
 ◦ Θ ◦ −1

¢
(0) implies −1 (

0) = Θ
¡
−1 (

0)
¢
so that  =

Θ ()  Since a stretch preserves orientation and  (4) = 4000
we have ∠0 00 = ∠ = Θ Therefore  = 0Θ.

Theorem 207 If  is any point,  is any line and   0, then

 ◦  ◦ −1 = ()

Proof. The proof is left to the reader.

In light of Theorems 206 and 207, it is immediately clear that a stretch

about  commutes with rotations about  and reflections in lines through 

(c.f. Exercises 4 and 5 in Section 5.3).

Exercises
1. Consider an equilateral triangle 4 and the line  =

←→
 Find all

points and lines fixed by the similarity  ◦ 2

2. A dilation with center  and ratio  has equations 0 = −2 + 3 and
0 = −2 − 4 Find  and .

3. Let  be a similarity such that 
¡£
0
0

¤¢
=
£
1
0

¤
 
¡£
1
0

¤¢
=
£
2
2

¤
and 

¡£
2
2

¤¢
=£−1

6

¤


a. Find the equations of 

b. Find 
¡£−1

6

¤¢


4. Prove that if  is any point,  is any line and   0, then  ◦ ◦ −1 =
()

5. (The fixed point of a stretch-reflection or stretch-rotation) Let  be a

stretch-reflection or a stretch-rotation. Choose distinct points  and 

such that  =
←→
 and 0 =  () intersect at point  Let 0 =  () 

0 =  () and choose a point  off  Let  be the line through 

parallel to ; let 0 be the line through  0 =  () parallel to 0 Then

lines  and 0 intersect at point  Similarly, lines  =
←→
 and 0 =

←−→
00

intersect at point  Let  be the line through  parallel to ; let 0 be
the line through 0 parallel to 0 Then lines  and 0 intersect at point
 Finally, let  =

←→
 ∩←→ and prove that  ( ) =  .
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6. Complete the proof of Theorem 203: Prove that the sets I = {isometries},
J = {stretches} K = {stretch rotations} and L = {stretch reflections} are
mutually disjoint.

7. Prove that the set of all direct similarities forms a group under composition

of functions.

8. Which group properties fail for the set of opposite similarities?

9. Complete the proof of Theorem 202:

(a) If − −  prove that  =  0

(b) If  −− prove that  =  0.

10. Prove the converse of Theorem 205, i.e., a transformation with equations

of either indicated form is a similarity.



Chapter 6

Billiards: An Application of

Symmetry

The trajectory of a billiard ball in motion on a frictionless billiards table is

completely determined by its initial position, direction, and speed. When the

ball strikes a bumper, we assume that the angle of incidence equals the angle

of reflection. Once released, the ball continues indefinitely along its trajectory

with constant speed unless it strikes a vertex, at which point it stops. If the

ball returns to its initial position with its initial velocity direction, it retraces its

trajectory and continues to do so repeatedly; we call such trajectories periodic.

Nonperiodic trajectories are either infinite or singular ; in the later case the

trajectory terminates at a vertex.

More precisely, think of a billiards table as a plane region  bounded by a

polygon . A nonsingular trajectory on  is a piecewise linear constant speed

curve  : R→ , where () is the position of the ball at time . An orbit is the

restriction of some nonsingular trajectory to a closed interval; this is distinct

from the notion of “orbit” in discrete dynamical systems.

A nonsingular trajectory  is periodic if (+ ) = (+ ) for some   

and all  ∈ R; its restriction to [ ] is a periodic orbit. A periodic orbit retraces
the same path exactly  ≥ 1 times. If  = 1, the orbit is primitive; otherwise it
is an -fold iterate. If  is primitive,  denotes its -fold iterate. The period

of a periodic orbit is the number of times the ball strikes a bumper as it travels

along its trajectory. If  is primitive of period , then  has period .

In this article we give a complete solution to the following billiards problem:

Find, classify, and count the classes of periodic orbits of a given period on an

equilateral triangle. While periodic orbits are known to exist on all nonobtuse

and certain classes of obtuse triangles, existence in general remains a long-

standing open problem. The first examples of periodic orbits were discovered by

Fagnano in 1745. Interestingly, his orbit of period 3 on an acute triangle, known

as the “Fagnano orbit,” was not found as the solution of a billiards problem,

but rather as the triangle of least perimeter inscribed in a given acute triangle.

129
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This problem, known as “Fagnano’s problem,” is solved by the orthic triangle,

whose vertices are the feet of the altitudes of the given triangle (see Figure 1).

The orthic triangle is a periodic trajectory since its angles are bisected by the

altitudes of the triangle in which it is inscribed; the proof given by Coxeter

and Greitzer uses exactly the “unfolding” technique we apply below. Coxeter

credits this technique to H. A. Schwarz and mentions that Frank and F. V.

Morley extended Schwarz’s treatment on triangles to odd-sided polygons. For

a discussion of some interesting properties of the Fagnano orbit on any acute

triangle.

Figure 6.1: Fagnano’s period 3 orbit.

Much later, in 1986, Masur proved that every rational polygon (one whose

interior angles are rational multiples of ) admits infinitely many periodic or-

bits with distinct periods, but he neither constructed nor classified them. A

year later Katok proved that the number of periodic orbits of a given period

grows subexponentially. Existence results on various polygons were compiled

by Tabachnikov in 1995.

This article is organized as follows: In Section 2 we introduce an equivalence

relation on the set of all periodic orbits on an equilateral triangle and prove that

every orbit with odd period is an odd iterate of Fagnano’s orbit. In Section 3

we use techniques from analytic geometry to identify and classify all periodic

orbits. The paper concludes with Section 4, in which we derive two counting

formulas: First, we establish a bijection between classes of orbits with period

2 and partitions of  with 2 or 3 as parts and use it to show that there are

O() = b+2
2
c − b+2

3
c classes of orbits with period 2 (counting iterates).

Second, we show that there are P() = P
| ()O () classes of primitive

orbits with period 2 where  denotes the Möbius function.

6.1 Orbits and Tessellations

Consider an equilateral triangle 4 We begin with some key observations.

Proposition 208 Every nonsingular trajectory strikes some side of 4

with an angle of incidence in the range 30◦ ≤  ≤ 60◦
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Proof. Given a nonsingular trajectory  choose a point 1 at which 

strikes 4 with angle of incidence 1 If 1 lies in the desired range, set

 = 1. Otherwise, let 1 be the segment of  that connects 1 to the next

strike point 2 and label the vertices of 4 so that 1 is on side  and 2
is on side  (see Figure 2). If 0◦  1  30

◦ then 2 = ∠12 = 1+60
◦

so that 60◦  2  90
◦. Let 2 be the segment of  that connects 2 to the next

strike point 3 Then the angle of incidence at 3 satisfies 30
◦  3  60◦; set

 = 3 If 60
◦  1 ≤ 90◦ and 1 is an interior angle of 412 then the angle

of incidence at 2 is 2 = ∠12 = 120◦ − 1 and satisfies 30
◦ ≤ 2  60

◦;
set  = 2 But if 60

◦  1 ≤ 90◦ and 1 is an exterior angle of 412

then the angle of incidence at 2 is 2 = ∠12 = 1 − 60◦ in which case
0◦  2 ≤ 30◦ If 2 = 30◦ set  = 2; otherwise continue as above until

30◦  4  60
◦ and set  = 4

Figure 6.2: Incidence angles in the range 30◦ ≤  ≤ 60◦

Let  be an orbit of period  on 4 oriented so that  is horizontal.

Since Proposition 208 applies equally well to periodic orbits, choose a point 

at which  strikes 4 with angle of incidence in the range 30◦ ≤  ≤ 60◦
If necessary, relabel the vertices of 4, change initial points, and reverse

the parameter so that side  contains   begins and ends at  , and the

components of 0 as the ball departs from  are positive. Let T be a regular

tessellation of the plane by equilateral triangles, each congruent to 4, and

positioned so that one of its families of parallel edges is horizontal. Embed

4 in T so that its base  is collinear with a horizontal edge of T . Let
1 2      denote the directed segments of  labelled sequentially; then 1
begins at  and terminates at 1 on side 1 of 4 with angle of incidence

1. Let 1 be the reflection in the edge of T containing 1 Then 1 and 1(2)
are collinear segments and 1() is a periodic orbit on 1(4) which is

the basic triangle of T sharing side 1 with 4. Follow 1(2) from 1
until it strikes side 2 of 1(4) at 2 with incidence angle 2. Let 2 be

the reflection in the edge of T containing 2; then 1, 1(2) and (21) (3)

are collinear segments and (21) () is a periodic orbit on (21) (4).
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Continuing in this manner for  − 1 steps, let  be the angle of incidence at
 = (−1−2 · · ·1) ( )  Then 1 2      is a sequence of incidence angles
with 30◦ ≤  ≤ 60◦ and 1 1(2)     (−1−2 · · ·1) () is a sequence
of collinear segments whose union is the directed segment from  to  Let 

denote the directed segment from  to  Then  has the same length as 

and enters and exits the triangle ( · · ·1) (4) with angles of incidence 
and +1 We refer to  as an unfolding of  and to  as its representation

angle.

Proposition 209 A periodic orbit strikes the sides of 4 with at most

three incidence angles, exactly one of which lies in the range 30◦ ≤  ≤ 60◦ In
fact, exactly one of the following holds:

1. All incidence angles measure 60◦

2. There are exactly two distinct incidence angles measuring 30◦ and 90◦.

3. There are exactly three distinct incidence angles , , and  such that

0◦    30◦    60◦    90◦

Proof. Let  be a periodic orbit and let  be an unfolding. By construc-

tion,  cuts each horizontal edge of T with angle of incidence in the range

30◦ ≤  ≤ 60◦ Consequently,  cuts a left-leaning edge of T with angle of

incidence  = 120◦− and cuts a right-leaning edge of T with angle of incidence
 = 60◦ −  (see Figure 3). In particular, if  = 60◦  cuts only left-leaning

and horizontal edges, and all incidence angles are equal. In this case,  is either

the Fagnano orbit, a primitive orbit of period 6, or some iterate of these. If

 = 30◦ then  = 90◦ and  = 30◦ and  is either primitive of period 4 or

some iterate thereof (see Figure 4). When 30◦    60◦ clearly 0◦    30◦

and 60◦    90◦

Corollary 210 Any two unfoldings of a periodic orbit are parallel.

Figure 6.3: Incidence angles  , and 

Our next result plays a pivotal role in the classification of orbits.

Theorem 211 If an unfolding of a periodic orbit  terminates on a horizontal

edge of T , then  has even period.
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Period 10 Unfolding
Period 6 Unfolding

Period 4 Unfolding

Q

P5

P4

P3

P2

P1

Q

P3

P1

Q

P2

P

P P

Figure 6.4: Unfolded orbits of period 4, 6, and 10.

Proof. Let  be an unfolding of  Then both  and  lie on horizontal

edges of T , and the basic triangles of T cut by  pair off and form a polygon

of rhombic tiles containing  (see Figure 5). As the path  traverses this

polygon, it enters each rhombic tile through an edge, cuts a diagonal of that

tile (collinear with a left-leaning edge of T ), and exits through another edge.
Since each exit edge of one tile is the entrance edge of the next and the edge

containing  is identified with the edge containing , the number of distinct

edges of T cut by  is twice the number of rhombic tiles. It follows that 

has even period.

Let  denote the Fagnano orbit.

Theorem 212 If  is a periodic orbit and  6= 2−1 for all  ≥ 1 then every
unfolding of  terminates on a horizontal edge of T .
Proof. We prove the contrapositive. Suppose there is an unfolding  of

 that does not terminate on a horizontal edge of T . Let  be the angle of
incidence at ; then  is also the angle of incidence at  and  ∈ {30◦ 60◦}
by the proof of Proposition 209. But if  = 30◦, then  is some iterate of the

period 4 orbit whose unfoldings terminate on a horizontal edge of T (see Figure
4). So  = 60◦ But  is neither an iterate of a period 6 orbit nor an even iterate
of  since their unfoldings also terminate on a horizontal edge of T (see Figure

4). It follows that  = 2−1 for some  ≥ 1.
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Figure 6.5: A typical rhombic tiling.

Combining the contrapositives of Theorems 211 and 212 we obtain the fol-

lowing characterization:

Corollary 213 If  is an orbit with odd period, then  = 2−1 for some  ≥ 1
in which case the period is 6 − 3

Let  be an orbit with even period and let  be an unfolding. Let 

be the group generated by all reflections in the edges of T . Since the action
of  on  generates a regular tessellation H of the plane by hexagons, 

terminates on some horizontal edge of H. As in the definition of an unfolding,
let 1 2     −1 be the reflections in the lines of T cut by  (in order)

and  be the reflection in the line of T containing . Then the composition

 = −1 · · ·1 maps  to  and maps the hexagon whose base  contains
 to the hexagon whose base 0 0 contains . Then  (the period of ) is

even and  is either a translation by vector
−−→
 or a rotation of 120◦ or 240◦.

But k0 0 so  is a translation and the position of  on 00 is exactly the
same as the position of  on .

Periodic orbits represented by horizontal translations of an unfolding 

are generically distinct, but have the same length and incidence angles (up to

permutation) as . Hence it is natural to think of them as equivalent.

Definition 214 Periodic orbits  and  are equivalent if there exist respective

unfoldings  and  and a horizontal translation  such that  = 
¡


¢
.

The symbol [] denotes the equivalence class of  The period of a class [] is

the period of its elements; a class is even if and only if it has even period.
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Q

Q

P

P

Figure 6.6: Unfoldings of equivalent period 4 orbits.

Consider an unfolding  of a periodic orbit . If [] is even, let  be a

point on  and let  is the translation from  to . We say that the point 

is singular for [] if () contains a vertex of T ; then () is an unfolding

of a periodic orbit whenever  is non-singular for []. Furthermore,  strikes

 at finitely many points and at most finitely many points on  are singular

for []. Therefore [] has cardinality c (the cardinality of an interval). On the
other hand, Corollary 213 tells us that an orbit of odd period is 2−1 for some
 ≥ 1. But if  6= , then 2−1 and 2−1 have different periods and cannot be
equivalent. Therefore [2−1] is a singleton class for each . We have proved:

Proposition 215 The cardinality of a class is determined by its parity; in fact,

 has odd period if and only if [] is a singleton class.

Proposition 215 and Corollary 213 completely classify orbits with odd pe-

riod. The remainder of this article considers orbits with even period. Our

strategy is to represent the classes of all such orbits as lattice points in some

“fundamental region," which we now define. First note that any two unfoldings

whose terminal points lie on the same horizontal edge of H are equivalent. Since
H has countably many horizontal edges, there are countably many even classes

of orbits. Furthermore, since at most finitely many points in  are singular

for each even class, there is a point  on  other than the midpoint that is

nonsingular for every class. Therefore, given an even class [], there is a point 

and an element  ∈ [] such that  is an unfolding of . Note that if  is an
unfolding of , then  is the horizontal translation of  by

−−→
. Therefore

 uniquely determines the point , denoted henceforth by , and we refer to

 as the fundamental unfolding of []. The fundamental region at O, denoted

by Γ, is the polar region 30
◦ ≤  ≤ 60◦ centered at ; the points  are called

lattice points of Γ
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Since  is not the midpoint of , odd iterates of Fagnano’s orbit  have

no fundamental unfoldings. On the other hand, the fundamental unfolding of

2 represents the -fold iterate of a primitive period 6 orbit. Nevertheless,

with the notable exception of [2], “primitivity" is a property common to all

orbits of the same class (see Figure 7). Indeed, the fundamental unfolding of

[2] represents a primitive orbit. So we define a primitive class to be either
£
2
¤

or a class of primitives.

Figure 6.7: The Fagnano orbit and an equivalent period 6 orbit (dotted).

To complete the classification, we must determine exactly which directed

segments in Γ with initial point  represent orbits with even period. We

address this question in the next section.

6.2 Orbits and Rhombic Coordinates

In this section we introduce the analytical structure we need to complete the

classification and to count the distinct classes of orbits of a given even period.

Expressing a fundamental unfolding  as a vector
−→
 allows us to exploit the

natural rhombic coordinate system given by T . Let  be the origin and take

the -axis to be the horizontal line containing it. Take the -axis to be the line

through  with inclination 60◦ and let  be the unit of length (see Figure 8).

Then in rhombic coordinates

Γ = {( ) | 0 ≤  ≤ } 

Since the period of [] is twice the number of rhombic tiles cut by 

and the rhombic coordinates of  count these rhombic tiles, we can strengthen

Theorem 211:

Corollary 216 If  = ( ), then  has period 2(+ )
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Figure 6.8: Rhombic coordinates.

Points in the integer sublattice L of points on the horizontals of H that are

images of under the action of have the following simple characterization: Let

 be the hexagon of H with base , and let 1 and 2 denote the translations

by the vectors (1 1) and (0 3), respectively. Then the six hexagons adjacent to

 are its images  2

1 (), ( ) ∈ {±(1 0)±(1−1)±(2−1)}. Inductively,

if  0 is any hexagon of H, then  0 =  2

1 () for some   ∈ Z. Note that

(1 1)+(0 3) defines the translation  2

1. Hence L is generated by the vectors

(1 1) and (0 3) and it follows that ( ) ∈ L if and only if  ≡  (mod 3).

Now recall that if  is an unfolding, then  lies on a horizontal of H.
Hence  is a fundamental unfolding if and only if  ∈ L∩Γ − if and only

if  ∈ {( ) ∈ Z2 ∩ Γ |  ≡ (mod 3) +  = }. We have proved:

Theorem 217 Given an even class [], let ( ) = . There is a bijection

Φ : {[] | [] has period 2}→ {( ) ∈ Z2 ∩ Γ |  ≡ (mod 3) +  = }

given by Φ ([]) = ( ).

Taken together, Proposition 215, Corollary 216 and Theorem 217 classify all

periodic orbits on an equilateral triangle.

Theorem 218 (Classification) Let  be a periodic orbit on an equilateral tri-

angle.

1. If  has period 2, then [] has cardinality c and contains exactly one
representative whose unfolding  satisfies  = ( ), 0 ≤  ≤   ≡ 

(mod 3), and +  = .

2. Otherwise,  = 2−1 for some  ≥ 1 in which case its period is 6 − 3
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In view of Theorem 217, we may count classes of orbits of a given period

2 by counting integer pairs ( ) such that 0 ≤  ≤   ≡  (mod 3) and

+  =  This is the objective of the next and concluding section.

Figure 6.9: Translated images of  in Γ and unfoldings of period 22 orbits.

6.3 Orbits and Integer Partitions

We will often refer to an ordered pair ( ) as an “orbit" when we mean the

even class of orbits to which it corresponds. Two questions arise: (1) Is there

an orbit with period 2 for each  ∈ N? (2) If so, exactly how many distinct
classes of orbits with period 2 are there?



6.3. ORBITS AND INTEGER PARTITIONS 139

Figure 15: Period 22 orbits (1 10) and (4 7).
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If we admit iterates, question (1) has an easy answer. Clearly there are no

period 2 orbits since no two sides of 4 are parallel – alternatively, if ( )

is a solution of the system  ≡  (mod 3) and + = 1, either  or  is negative.

For each   1 the orbit

 =

⎧⎨⎩ (
2
 
2
)  even

(−1
2
− 1 −1

2
+ 2)  odd.

has period 2 Note that the period 22 orbits (1 10) and (4 7) are not equivalent

since they have different lengths and representation angles (see Figures 9 and

10).

To answer to question (2), we reduce the problem to counting partitions by

constructing a bijection between classes of orbits with period 2 and partitions

of  with 2 and 3 as parts. For a positive integer , a partition of  is a

nonincreasing sequence of nonnegative integers whose terms sum to . Such a

sequence has finitely many nonzero terms, called the parts followed by infinitely

many zeros. Thus, we seek pairs of nonnegative integers ( ) such that  =

2+ 3. The reader can easily prove:

Lemma 219 For each  ∈ N let

 =
©
( ) ∈ Z2 | 0 ≤  ≤   ≡ (mod 3) +  = 

ª
and

 = {( ) ∈ Z2 |   ≥ 0 and 2+ 3 = }

The function  :  →  given by  ( ) = ( + 3) is a bijection.

Combining Theorem 218 and Lemma 219, we have:

Corollary 220 For each  ∈ N, there is a bijection between period 2 orbits
and the partitions of  with 2 and 3 as parts.

Counting partitions of  with specified parts is well understood (e.g., Sloane’s

A103221). The number of partitions of  with 2 and 3 as parts is the coefficient

of  in the generating function

() =

∞X
=0

O()

= (1 + 2 + 4 + 6 + · · · )(1 + 3 + 6 + 9 + · · · )
=

1

(1− 2)(1− 3)
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To compute this coefficient, let  be a primitive cube root of unity and perform

a partial fractions decomposition. Then

() =
1

4(1 + )
+

1

4(1− )
+

1

6(1− )2
+
1

9

µ
1 + 2

 − 
+
1 + 22

2 − 

¶
=
1

4

∞X
=0

(−1) + 1
4

∞X
=0

 +
1

6

∞X
=0

(+ 1)

+
1

9

∞X
=0

(2+2 + 22 + +1 + 2)

and we have

O() = (−1)
4

+


6
+
5

12
+
1

9

¡
2+2 + 22 + +1 + 2

¢


By easy induction arguments, one can obtain the following simpler formula-

tions:

Theorem 221 The number of distinct classes of period 2 is exactly

O() =
½ b

6
c  ≡ 1 (mod 3)

b
6
c+ 1 otherwise

=

¹
+ 2

2

º
−
¹
+ 2

3

º


Let us refine this counting formula by counting only primitives. For every

divisor  of , the ()-fold iterate of a primitive period 2 orbit has period

2. Hence, if P() denotes the number of primitive classes of period 2, then

O() =
X
|
P()

A formula for P() is a direct consequence of the Möbius inversion formula.
The Möbius function  : N→ {−1 0 1} is defined by

 () =

⎧⎨⎩ 1  = 1

(−1)   = 12 · · ·  for distinct primes 
0 otherwise.

Theorem 222 For each  ∈ N, there are exactly

P() =
X
|

()O()

primitive classes of period 2.

Theorems 221 and 222, together with Example 227 below, imply:
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Corollary 223 O() = 0 if and only if  = 1; P() = 0 if and only if  =

1 4 6 10

Corollary 224 The following are equivalent:

1. The integer  is 1 or prime.

2. P() = O()
3. All classes of period 2 are primitive.

Table 1 displays some values of O and P. The values O(4) = 1, P(4) = 0 and
P(2) = 1, for example, indicate that the single class of period 8 contains only
2-fold iterates of the primitive orbits in the single class of period 4.

We conclude with an example of a primitive class of period 2 for each

 ∈ N− {1 4 6 10}. But first we need the following self-evident lemma:

Lemma 225 Given an orbit ( ) ∈ Γ let  ∈ N be the largest value such

that  ≡  (mod 3). Then ( ) is primitive if and only if  = 1; otherwise

( ) is a -fold iterate of the primitive orbit ( ).

Although  is difficult to compute, it is remarkably easy to check for primi-

tivity.

Theorem 226 An orbit ( ) ∈ Γ is primitive if and only if either

1. gcd ( ) = 1 or

2. ( ) = (3 3) gcd ( ) = 1, and  6≡  (mod 3) for some   ∈ N∪ {0} 

Proof. If gcd ( ) = 1, the orbit ( ) is primitive. On the other hand, if

( ) = (3 3)  6≡  (mod 3), and gcd ( ) = 1 for some  , let  be as in

Lemma 225. Then  6= 3 since  6≡  (mod 3). But gcd ( ) = 1 implies  = 1,

so ( ) is also primitive when (2) holds.

Conversely, given a primitive orbit ( ) let  = gcd( ) Then  =  ≤
 =  for some  ∈ N∪{0}; thus  ≤  gcd() = 1 and  ≡  (mod

3). Suppose (2) fails. The reader can check that 3 -  in which case  ≡ 

(mod 3). But  ≡  (mod 3) and the primitivity of ( ) imply  = 1.

Example 227 Using Theorem 226, the reader can check that the following or-

bits of period 2 are primitive:

•  = 2 + 1  ≥ 1 : ( − 1  + 2)
•  = 2 : (1 1)

•  = 4 + 4  ≥ 1 : (2 − 1 2 + 5)
•  = 4 + 10  ≥ 1 : (2 − 1 2 + 11).

Since P() tells us there are no primitive orbits of period 2 8 12 or 20 Example
227 exhibits a primitive orbit of every possible even period.
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 2 O() P()
1 2 0 0

2 4 1 1

3 6 1 1

4 8 1 0

5 10 1 1

6 12 2 0

7 14 1 1

8 16 2 1

9 18 2 1

10 20 2 0

11 22 2 2

12 24 3 1

13 26 2 2

14 28 3 1

15 30 3 1

16 32 3 1

17 34 3 3

18 36 4 1

19 38 3 3

20 40 4 2

21 42 4 2

22 44 4 1

23 46 4 4

24 48 5 1

25 50 4 3

26 52 5 2

27 54 5 3

28 56 5 2

29 58 5 5

30 60 6 2

 2 O() P()
31 62 5 5

32 64 6 3

33 66 6 3

34 68 6 2

35 70 6 4

36 72 7 2

37 74 6 6

38 76 7 3

39 78 7 4

40 80 7 2

41 82 7 7

42 84 8 2

43 86 7 7

44 88 8 4

45 90 8 4

46 92 8 3

47 94 8 8

48 96 9 3

49 98 8 7

50 100 9 4

51 102 9 5

52 104 9 4

53 106 9 9

54 108 10 3

55 110 9 6

56 112 10 4

57 114 10 6

58 116 10 4

59 118 10 10

60 120 11 2

Table 1. Sample values of O and P.
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 2 O() P()
1 2 0 0

2 4 1 1

3 6 1 1

4 8 1 0

5 10 1 1

6 12 2 0

7 14 1 1

8 16 2 1

9 18 2 1

10 20 2 0

11 22 2 2

12 24 3 1

13 26 2 2

14 28 3 1

15 30 3 1

16 32 3 1

17 34 3 3

18 36 4 1

19 38 3 3

20 40 4 2

21 42 4 2

22 44 4 1

23 46 4 4

24 48 5 1

25 50 4 3

26 52 5 2

27 54 5 3

28 56 5 2

29 58 5 5

30 60 6 2

 2 O() P()
31 62 5 5

32 64 6 3

33 66 6 3

34 68 6 2

35 70 6 4

36 72 7 2

37 74 6 6

38 76 7 3

39 78 7 4

40 80 7 2

41 82 7 7

42 84 8 2

43 86 7 7

44 88 8 4

45 90 8 4

46 92 8 3

47 94 8 8

48 96 9 3

49 98 8 7

50 100 9 4

51 102 9 5

52 104 9 4

53 106 9 9

54 108 10 3

55 110 9 6

56 112 10 4

57 114 10 6

58 116 10 4

59 118 10 10

60 120 11 2

Table 6.1: Sample Values for O() and P().


