Math 422

Schur's Triangularization Theorem tells us that every matrix $A$ is unitarily similar to an upper triangular matrix $T$. However, the only thing certain at this point is that the the diagonal entries of $T$ are the eigenvalues of $A$. The off-diagonal entries of $T$ seem unpredictable and out of control. Recall that the Core-Nilpotent Decomposition of a singular matrix $A$ of index $k$ produces a block diagonal matrix

$$
\left[\begin{array}{ll}
C & \mathbf{0} \\
\mathbf{0} & L
\end{array}\right]
$$

similar to $A$ in which $C$ is non-singular, $\operatorname{rank}(C)=\operatorname{rank}\left(A^{k}\right)$, and $L$ is nilpotent of index $k$. Is it possible to simplify $C$ and $L$ via similarity transformations and obtain triangular matrices whose off-diagonal entries are predictable? The goal of this lecture is to do exactly this for nilpotent matrices.

Let $L$ be an $n \times n$ nilpotent matrix of index $k$. Then $L^{k-1} \neq 0$ and $L^{k}=0$. Let's compute the eigenvalues of $L$. Suppose $x \neq 0$ satisfies $L x=\lambda x$; then $0=L^{k} x=L^{k-1}(L x)=L^{k-1}(\lambda x)=\lambda L^{k-1} x=\lambda L^{k-2}(L x)=$ $\lambda^{2} L^{k-2} x=\cdots=\lambda^{k} x$; thus $\lambda=0$ is the only eigenvalue of $L$.

Now if $L$ is diagonalizable, there is an invertible matrix $P$ and a diagonal matrix $D$ such that $P^{-1} L P=D$. Since the diagonal entries of $D$ are the eigenvalues of $L$, and $\lambda=0$ is the only eigenvalue of $L$, we have $D=0$. Solving $P^{-1} L P=0$ for $L$ gives $L=0$. Thus a diagonalizable nilpotent matrix is the zero matrix, or equivalently, a non-zero nilpotent matrix $L$ is not diagonalizable. And indeed, some off-diagonal entries in the "simplified" form of $L$ will be non-zero.

Let $L$ be a non-zero nilpotent matrix. Since $L$ is triangularizable, there exists an invertible $P$ such that

$$
P^{-1} L P=\left[\begin{array}{cccc}
0 & * & \cdots & * \\
0 & 0 & \ddots & * \\
\vdots & \vdots & \ddots & * \\
0 & 0 & \cdots & 0
\end{array}\right]
$$

The simplification procedure given in this lecture produces a matrix similar to $L$ whose non-zero entries lie exclusively on the superdiagonal of $P^{-1} L P$. An example of this procedure follows below.

Definition 1 Let $L$ be nilpotent of index $k$ and define $L^{0}=I$. For $p=1,2, \ldots, k$, let $x \in \mathbb{C}^{n}$ such that $y=L^{p-1} x \neq 0$. The Jordan chain on $y$ of length $p$ is the set $\left\{L^{p-1} x, \ldots, L x, x\right\}$.

Exercise 2 Let $L$ be nilpotent of index $k$. If $x \in \mathbb{C}^{n}$ satisfies $L^{k-1} x \neq 0$, prove that $\left\{L^{k-1} x, \ldots, L x, x\right\}$ is linearly independent.
Example 3 Let $L=\left[\begin{array}{ccc}0 & 1 & 2 \\ 0 & 0 & 3 \\ 0 & 0 & 0\end{array}\right]$; then $L^{2}=\left[\begin{array}{ccc}0 & 0 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$ and $L^{3}=0 . \operatorname{Let} x=\left[\begin{array}{c}a \\ b \\ c\end{array}\right]$; then

$$
L x=\left[\begin{array}{lll}
0 & 1 & 2 \\
0 & 0 & 3 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
b+2 c \\
3 c \\
0
\end{array}\right] \quad \text { and } L^{2} x=\left[\begin{array}{lll}
0 & 0 & 3 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
a \\
b \\
c
\end{array}\right]=\left[\begin{array}{c}
3 c \\
0 \\
0
\end{array}\right]
$$

Note that $\left\{L^{2} x, L x, x\right\}$ is linearly independent iff $c \neq 0$. Thus if $x=\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]^{T}$, then $y=L^{2} x=\left[\begin{array}{lll}9 & 0 & 0\end{array}\right]^{T}$ and the Jordan chain on $y$ is

$$
\left\{\left[\begin{array}{l}
9 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
8 \\
9 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]\right\}
$$

Form the matrix

$$
P=\left[L^{2} x|L x| x\right]=\left[\begin{array}{ccc}
9 & 8 & 1 \\
0 & 9 & 2 \\
0 & 0 & 3
\end{array}\right]
$$

then

$$
P^{-1} L P=\frac{1}{243}\left[\begin{array}{rrr}
27 & -24 & 7 \\
0 & 27 & -18 \\
0 & 0 & 81
\end{array}\right]\left[\begin{array}{lll}
0 & 1 & 2 \\
0 & 0 & 3 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
9 & 8 & 1 \\
0 & 9 & 2 \\
0 & 0 & 3
\end{array}\right]=\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right]
$$

is the "Jordan form" of $L$.
Since $\lambda=0$ is the only eigenvalue of an $n \times n$ non-zero nilpotent $L$, the eigenvectors of $L$ are exactly the non-zero vectors in $N(L)$. But $\operatorname{dim} N(L)<n$ since $L$ is not diagonalizable and possesses an incomplete set of linearly independent eigenvectors. So the process by which one constructs the desired similarity transformation $P^{-1} L P$ involves appropriately extending a deficient basis for $N(L)$ to a basis for $\mathbb{C}^{n}$. This process has essentially two steps:

- Construct a somewhat special basis $\mathcal{B}$ for $N(L)$.
- Extend $\mathcal{B}$ to a basis for $\mathbb{C}^{n}$ by building Jordan chains on the elements of $\mathcal{B}$.

Definition 4 A nilpotent Jordan block is a matrix of the form

$$
\left[\begin{array}{ccccc}
0 & 1 & 0 & \cdots & 0 \\
0 & 0 & 1 & \ddots & 0 \\
0 & 0 & 0 & \ddots & 0 \\
\vdots & \vdots & \vdots & \ddots & 1 \\
0 & 0 & 0 & \cdots & 0
\end{array}\right]
$$

A nilpotent Jordan matrix is a block diagonal matrix of the form

$$
\left[\begin{array}{cccc}
J_{1} & 0 & \cdots & 0  \tag{1}\\
0 & J_{2} & \ddots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & J_{m}
\end{array}\right]
$$

where each $J_{i}$ is a nilpotent Jordan block.
When the context is clear we refer to a nilpotent Jordan matrix as a Jordan matrix.
Theorem 5 Every $n \times n$ nilpotent matrix $L$ of index $k$ is similar to an $n \times n$ Jordan matrix $J$ in which

- the number of Jordan blocks is $\operatorname{dim} N(L)$;
- the size of the largest Jordan block is $k \times k$;
- for $1 \leq j \leq k$, the number of $j \times j$ Jordan blocks is

$$
\operatorname{rank}\left(L^{j-1}\right)-2 \operatorname{rank}\left(L^{j}\right)+\operatorname{rank}\left(L^{j+1}\right) ;
$$

- the ordering of the $J_{i}$ 's is arbitrary.

Whereas the essentials of the proof appear in the algorithm below, we omit the details.
Definition 6 If $L$ is a nilpotent matrix, a Jordan form of $L$ is a Jordan matrix $J=P^{-1} L P$. The Jordan structure of $L$ is the number and size of the Jordan blocks in every Jordan form $J$ of $L$.

Theorem 5 tells us that Jordan form is unique up to ordering of the blocks $J_{i}$. Indeed, given any prescribed ordering, there is a Jordan form whose Jordan blocks appear in that prescribed order.

Definition 7 The Jordan Canonical Form (JCF) of a nilpotent matrix L is the Jordan form of $L$ in which the Jordan blocks are distributed along the diagonal in order of decreasing size.

Example 8 Let us determine the Jordan structure and JCF of the nilpotent matrix

$$
L=\left[\begin{array}{rrrrrr}
1 & 1 & -2 & 0 & 1 & -1 \\
3 & 1 & 5 & 1 & -1 & 3 \\
-2 & -1 & 0 & 0 & -1 & 0 \\
2 & 1 & 0 & 0 & 1 & 0 \\
-5 & -3 & -1 & -1 & -1 & -1 \\
-3 & -2 & -1 & -1 & 0 & -1
\end{array}\right] \stackrel{\text { row-reduce }}{\longrightarrow}\left[\begin{array}{rrrrrr}
1 & 0 & 0 & -\frac{2}{3} & \frac{4}{3} & -\frac{1}{3} \\
0 & 1 & 0 & \frac{4}{3} & -\frac{5}{3} & \frac{2}{3} \\
0 & 0 & 1 & \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] ;
$$

the number of Jordan blocks is $\operatorname{dim} N(L)=3$. Then

$$
L^{2}=\left[\begin{array}{rrrrrr}
6 & 3 & 3 & 1 & 1 & 2 \\
-6 & -3 & -3 & -1 & -1 & -2 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
-6 & -3 & -3 & -1 & -1 & -2 \\
-6 & -3 & -3 & -1 & -1 & -2
\end{array}\right] \xrightarrow{\text { row-reduce }}\left[\begin{array}{llllll}
1 & \frac{1}{2} & \frac{1}{2} & \frac{1}{6} & \frac{1}{6} & \frac{1}{3} \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

has rank 1 and $L^{3}=0$; therefore the index $(L)=3$ and the size of the largest Jordan block is $3 \times 3$. Let

$$
\begin{aligned}
& r_{0}=\operatorname{rank}\left(L^{0}\right)=6 \\
& r_{1}=\operatorname{rank}\left(L^{1}\right)=3 \\
& r_{2}=\operatorname{rank}\left(L^{2}\right)=1 ; \\
& r_{3}=\operatorname{rank}\left(L^{3}\right)=0 \\
& r_{4}=\operatorname{rank}\left(L^{4}\right)=0
\end{aligned}
$$

then the number $n_{i}$ of $i \times i$ Jordan blocks is

$$
\begin{aligned}
& n_{1}=r_{0}-2 r_{1}+r_{2}=1 \\
& n_{2}=r_{1}-2 r_{2}+r_{3}=1 \\
& n_{3}=r_{2}-2 r_{3}+r_{4}=1
\end{aligned}
$$

Obtain the JCF by distributing these blocks along the diagonal in order of decreasing size. Then the JCF of $L$ is
$\left[\begin{array}{lll|ll|l}0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0\end{array}\right]$.

This leaves us with the task of determining a non-singular matrix $P$ such that $P^{-1} L P$ is the JCF of $L$. As mentioned above, this process has essentially two steps. A detailed algorithm follows our next definition and a key exercise.

Definition 9 Let $E$ be any row-echelon form of a matrix $A$. Let $c_{1}, \ldots, c_{q}$ index the columns of $E$ containing leading 1's and let $y_{i}$ denote the $c_{i}^{\text {th }}$ column of $A$. The columns $y_{1}, \ldots, y_{q}$ are called the basic columns of $A$.

Exercise 10 Let $B=\left[b_{1}|\cdots| b_{p}\right]$ be an $n \times p$ matrix with linearly independent columns. Prove that multiplication by $B$ preserves linear independence, i.e., if $\left\{v_{1}, \ldots, v_{s}\right\}$ is linearly independent in $\mathbb{C}^{p}$, then $\left\{B v_{1}, \ldots, B v_{s}\right\}$ is linearly independent in $\mathbb{C}^{n}$.

## Nilpotent Reduction to JCF

Given a nilpotent matrix $L$ of index $k$, set $i=k-1$ and let $\mathcal{S}_{k-1}=\left\{y_{1}, \ldots, y_{q}\right\}$ be the basic columns of $L^{k-1}$ 。

1. Extend $\mathcal{S}_{k-1} \cup \cdots \cup \mathcal{S}_{i}$ to a basis for $R\left(L^{i-1}\right) \cap N(L)$ in the following way:
(a) Let $\left\{b_{1}, \ldots, b_{p}\right\}$ be the basic columns of $L^{i-1}$ and let $B=\left[b_{1}|\cdots| b_{p}\right]$.
(b) Solve $L B x=0$ for $x$ and obtain a basis $\left\{v_{1}, \ldots, v_{s}\right\}$ for $N(L B)$; then $\left\{B v_{1}, \ldots, B v_{s}\right\}$ is a basis for $R\left(L^{i-1}\right) \cap N(L)$ by Lemma 11 below.
(c) Form the matrix $\left[y_{1}|\cdots| y_{q}\left|B v_{1}\right| \cdots \mid B v_{s}\right]$; its basic columns $\left\{y_{1}, \ldots, y_{q}, B v_{\beta_{1}}, \ldots, B v_{\beta_{j}}\right\}$ form a basis for $R\left(L^{i-1}\right) \cap N(L)$ containing $\mathcal{S}_{k-1} \cup \cdots \cup \mathcal{S}_{i}$. Let

$$
\mathcal{S}_{i-1}=\left\{B v_{\beta_{1}}, \ldots, B v_{\beta_{j}}\right\} .
$$

(d) Decrement $i$, let $\left\{y_{1}, \ldots, y_{q}\right\}$ be the basic columns of $L^{i}$, and repeat step 1 until $i=0$. Then $\mathcal{S}_{k-1} \cup \cdots \cup \mathcal{S}_{0}=\left\{b_{1}, \ldots, b_{t}\right\}$ is a basis for $N(L)$.
2. For each $j$, if $b_{j} \in \mathcal{S}_{i}$, find a particular solution $x_{j}$ of $L^{i} x=b_{j}$ and build a Jordan chain $\left\{L^{i} x_{j}, \ldots, L x_{j}, x_{j}\right\}$. Set

$$
p_{j}=\left[L^{i} x_{j}|\cdots| L x_{j} \mid x_{j}\right]
$$

the desired similarity transformation is defined by the matrix

$$
P=\left[p_{1}|\cdots| p_{t}\right] .
$$

Lemma 11 In the notation of the algorithm above, $\left\{B v_{1}, \ldots, B v_{s}\right\}$ is a basis for $R\left(L^{i-1}\right) \cap N(L)$.
Proof. Note that $B v_{j} \in R(B)$ and $L B v_{j}=0$ implies $B v_{j} \in N(L)$. But $R(B)=R\left(L^{i-1}\right)$ implies that $B v_{j} \in R(B) \cap N(L)$ for all $j$. The set $\left\{B v_{1}, \ldots, B v_{s}\right\}$ is linearly independent by Exercise 10 . To show that $\left\{B v_{1}, \ldots, B v_{s}\right\}$ spans $R(B) \cap N(L)$, let $y \in R(B) \cap N(L)$. Since $y \in R(B)$, there is some $u \in \mathbb{C}^{n}$ such that $y=B u$; since $y \in N(L), 0=L y=L B u$. Thus $u \in N(L B)$ and we may express $u$ in the basis $\left\{v_{1}, \ldots, v_{s}\right\}$ as $u=c_{1} v_{1}+\cdots+c_{s} v_{s}$. Therefore $y=B u=B\left(c_{1} v_{1}+\cdots+c_{s} v_{s}\right)=c_{1} B v_{1}+\cdots+c_{s} B v_{s}$ and $\left\{B v_{1}, \ldots, B v_{s}\right\}$ spans.

Example 12 Let's construct the matrix $P$ that produces the Jordan form of $L$ in Example 8. Since $L$ has index 3, we row-reduce $L^{2}$ and find one basic column

$$
y_{1}=[6,-6,0,0,-6,-6]^{T} .
$$

Then $\mathcal{S}_{2}=\left\{y_{1}\right\}$ contains the basic column of $R\left(L^{2}\right)$; set $i=2$.

1. Extend $\mathcal{S}_{2}$ to a basis for $R(L) \cap N(L)$ :
(a) Row-reducing, we find that the basic columns of $L$ are its first three columns. Thus we let

$$
B=\left[\begin{array}{rrr}
1 & 1 & -2 \\
3 & 1 & 5 \\
-2 & -1 & 0 \\
2 & 1 & 0 \\
-5 & -3 & -1 \\
-3 & -2 & -1
\end{array}\right]
$$

(b) Compute $L B$ and solve $L B x=0$ to obtain a basis for $N(L B)$ :

$$
\begin{aligned}
& L B=\left[\begin{array}{rrrrrr}
1 & 1 & -2 & 0 & 1 & -1 \\
3 & 1 & 5 & 1 & -1 & 3 \\
-2 & -1 & 0 & 0 & -1 & 0 \\
2 & 1 & 0 & 0 & 1 & 0 \\
-5 & -3 & -1 & -1 & -1 & -1 \\
-3 & -2 & -1 & -1 & 0 & -1
\end{array}\right]\left[\begin{array}{rrr}
1 & 1 & -2 \\
3 & 1 & 5 \\
-2 & -1 & 0 \\
2 & 1 & 0 \\
-5 & -3 & -1 \\
-3 & -2 & -1
\end{array}\right]=\left[\begin{array}{rrr}
6 & 3 & 3 \\
-6 & -3 & -3 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
-6 & -3 & -3 \\
-6 & -3 & -3
\end{array}\right] \\
& {\left[\begin{array}{rrr}
6 & 3 & 3 \\
-6 & -3 & -3 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
-6 & -3 & -3 \\
-6 & -3 & -3
\end{array}\right] \xrightarrow{\text { row-reduce }}\left[\begin{array}{lll}
2 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]} \\
& \left\{v_{1}=\left[\begin{array}{r}
-1 \\
2 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{r}
-1 \\
0 \\
2
\end{array}\right]\right\} .
\end{aligned}
$$

Then $\left\{B v_{1}=\left[\begin{array}{llllll}1 & -1 & 0 & 0 & -1 & -1\end{array}\right]^{T}, B v_{2}=\left[\begin{array}{lllll}-5 & 7 & 2 & -2 & 3\end{array}\right]^{T}\right\}$ is a basis for $R(L) \cap N(L)$.
(c) Form the matrix

$$
\left[y_{1}\left|B v_{1}\right| B v_{2}\right]=\left[\begin{array}{rrr}
6 & 1 & -5 \\
-6 & -1 & 7 \\
0 & 0 & 2 \\
0 & 0 & -2 \\
-6 & -1 & 3 \\
-6 & -1 & 1
\end{array}\right] \xrightarrow{\text { row-reduce }}\left[\begin{array}{lll}
1 & \frac{1}{6} & 0 \\
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

columns 1 and 3 are its basic columns, hence $\left\{y_{1}, y_{2}=B v_{2}\right\}$ is a basis for $R(L) \cap N(L)$ containing $\mathcal{S}_{2}$. Let

$$
\mathcal{S}_{1}=\left\{\left[\begin{array}{llllll}
-5 & 7 & 2 & - & 2 & 3
\end{array}\right]^{T}\right\}
$$

and decrement $i$; then $i=1$.
2. Extend $\mathcal{S}_{2} \cup \mathcal{S}_{1}=\left\{y_{1}, y_{2}\right\}$ to a basis for $R\left(L^{0}\right) \cap N(L)=N(L)$ :
(a) Since $L^{0}=I$, we let $B=I$.
(b) Since $L B=L$, we find a basis for $N(L B)=N(L)$ :

$$
\begin{gathered}
{\left[\begin{array}{rrrrrr}
1 & 1 & -2 & 0 & 1 & -1 \\
3 & 1 & 5 & 1 & -1 & 3 \\
-2 & -1 & 0 & 0 & -1 & 0 \\
2 & 1 & 0 & 0 & 1 & 0 \\
-5 & -3 & -1 & -1 & -1 & -1 \\
-3 & -2 & -1 & -1 & 0 & -1
\end{array}\right] \stackrel{\text { row-reduce }}{\longrightarrow}\left[\begin{array}{llllll}
1 & 0 & 0 & -\frac{2}{3} & \frac{4}{3} & -\frac{1}{3} \\
0 & 1 & 0 & \frac{4}{3} & -\frac{5}{3} & \frac{2}{3} \\
0 & 0 & 1 & \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]} \\
\left\{v_{1}=\left[\begin{array}{r}
2 \\
-4 \\
-1 \\
3 \\
0 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{r}
-4 \\
5 \\
2 \\
0 \\
3 \\
0
\end{array}\right], v_{3}=\left[\begin{array}{r}
1 \\
-2 \\
-2 \\
0 \\
0 \\
3
\end{array}\right]\right\}
\end{gathered}
$$

Then a basis for $N(L)$ is

$$
\left\{B v_{1}, B v_{2}, B v_{3}\right\}=\left\{v_{1}, v_{2}, v_{3}\right\}
$$

(c) Form the matrix

$$
\left[y_{1}\left|y_{2}\right| v_{1}\left|v_{2}\right| v_{3}\right]=\left[\begin{array}{rrrrr}
6 & -5 & 2 & -4 & 1 \\
-6 & 7 & -4 & 5 & -2 \\
0 & 2 & -1 & 2 & -2 \\
0 & -2 & 3 & 0 & 0 \\
-6 & 3 & 0 & 3 & 0 \\
-6 & 1 & 0 & 0 & 3
\end{array}\right] \xrightarrow{\text { row-reduce }}\left[\begin{array}{lllll}
1 & 0 & 0 & \frac{1}{4} & -\frac{3}{4} \\
0 & 1 & 0 & \frac{3}{2} & -\frac{3}{2} \\
0 & 0 & 1 & 1 & -1 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] ;
$$

columns 1,2, and 3 are its basic columns, hence $\left\{y_{1}, y_{2}, v_{1}\right\}$ is a a basis for $N(L)$ containing $\mathcal{S}_{2} \cup \mathcal{S}_{1}$. Let

$$
\mathcal{S}_{0}=\left\{\left[\begin{array}{lllllll}
2 & -4 & -1 & 3 & 0 & 0
\end{array}\right]^{T}\right\}
$$

and decrement $i$; then $i=0$ and the process terminates having produced the basis $\mathcal{S}_{2} \cup \mathcal{S}_{1} \cup \mathcal{S}_{0}$ for $N(L)$.
3. Let $\mathcal{S}_{2}=\left\{b_{1}\right\}, \mathcal{S}_{1}=\left\{b_{2}\right\}$, and $\mathcal{S}_{0}=\left\{b_{3}\right\}$. For $j=1,2,3$, build a Jordan chain on $b_{j} \in \mathcal{S}_{i}$ of length $i+1$ by finding a particular solution $x_{j}$ of $L^{i} x=b_{j}$. When $j=1$ we see by inspection that $L^{2} e_{1}=b_{1}$. Thus

$$
p_{1}=\left[L^{2} e_{1}\left|L e_{1}\right| e_{1}\right]=\left[\begin{array}{rrr}
6 & 1 & 1 \\
-6 & 3 & 0 \\
0 & -2 & 0 \\
0 & 2 & 0 \\
-6 & -5 & 0 \\
-6 & -3 & 0
\end{array}\right]
$$

When $j=2$ we solve $L x=b_{2}$ :

$$
\left[\begin{array}{rrrrrr|r}
1 & 1 & -2 & 0 & 1 & -1 & -5 \\
3 & 1 & 5 & 1 & -1 & 3 & 7 \\
-2 & -1 & 0 & 0 & -1 & 0 & 2 \\
2 & 1 & 0 & 0 & 1 & 0 & -2 \\
-5 & -3 & -1 & -1 & -1 & -1 & 3 \\
-3 & -2 & -1 & -1 & 0 & -1 & 1
\end{array}\right] \stackrel{\text { row-reduce }}{ }\left[\begin{array}{rrrrrr|r}
1 & 0 & 0 & -\frac{2}{3} & \frac{4}{3} & -\frac{1}{3} & -1 \\
0 & 1 & 0 & \frac{4}{3} & -\frac{5}{3} & \frac{2}{3} & 0 \\
0 & 0 & 1 & \frac{1}{3} & -\frac{2}{3} & \frac{2}{3} & 2 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

A particular solution is $x_{2}=\left[\begin{array}{llllll}-1 & 0 & 2 & 0 & 0 & 0\end{array}\right]^{T}$; hence

$$
p_{2}=\left[L x_{2} \mid x_{2}\right]=\left[\begin{array}{rr}
-5 & -1 \\
7 & 0 \\
2 & 2 \\
-2 & 0 \\
3 & 0 \\
1 & 0
\end{array}\right]
$$

When $j=3$ we have $L^{0}=I$, and the unique solution of $L^{0} x=b_{3}$ is $x=b_{3} \in \mathcal{S}_{0}$. Thus the Jordan chain on $b_{3}$ consists only of $b_{3}$ and we have $p_{3}=\left[\begin{array}{ccccc}2-4 & -1 & 0 & 0\end{array}\right]^{T}$. Finally, we form the matrix

$$
P=\left[p_{1}\left|p_{2}\right| p_{3}\right]=\left[\begin{array}{rrrrrr}
6 & 1 & 1 & -5 & -1 & 2 \\
-6 & 3 & 0 & 7 & 0 & -4 \\
0 & -2 & 0 & 2 & 2 & -1 \\
0 & 2 & 0 & -2 & 0 & 3 \\
-6 & -5 & 0 & 3 & 0 & 0 \\
-6 & -3 & 0 & 1 & 0 & 0
\end{array}\right]
$$

Then as expected, the JCF of $L$ is

$$
J=P^{-1} L P=\left[\begin{array}{ccc|cc|c}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Exercise 13 A Hessenberg matrix $H$ and a Jordan matrix $J$ appear below. Find an invertible matrix $P$ such that $J=P^{-1} H P$. (Note: Some texts define the JCF with 1's below the main diagonal as in H.)

$$
H=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right] ; J=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

Exercise 14 Prove that the Jordan matrices

$$
J_{1}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right], \quad J_{2}=\left[\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]
$$

are not similar. (Hint: Show that if $P=\left(p_{i j}\right)$ is a $4 \times 4$ matrix such that $P J_{1}=J_{2} P$, then $P$ is not invertible.)

Exercise $15 A 4 \times 4$ nilpotent matrix $L$ is given below. Find matrices $P$ and $J$ such that $P^{-1} L P=J$ has Jordan form:

$$
L=\left[\begin{array}{rrrr}
3 & 3 & 2 & 1 \\
-2 & -1 & -1 & -1 \\
1 & -1 & 0 & 1 \\
-5 & -4 & -3 & -2
\end{array}\right]
$$

Exercise 16 Consider the $5 \times 5$ matrix:

$$
L=\left[\begin{array}{rrrrr}
2 & 1 & 2 & 0 & -1 \\
3 & 1 & 3 & -1 & 1 \\
-3 & -1 & -2 & 0 & 2 \\
3 & 2 & 4 & 0 & -1 \\
2 & 1 & 2 & 0 & -1
\end{array}\right]
$$

a. Show that $L$ is nilpotent and determine its index of nilpotency.
b. Find the Jordan Form $J$ of $L$.
c. Find an invertible matrix $P$ such that $J=P^{-1} L P$.

Exercise 17 Determine the Jordan structure of the following $8 \times 8$ nilpotent matrix:

$$
L=\left[\begin{array}{rrrrrrrr}
41 & 30 & 15 & 7 & 4 & 6 & 1 & 3 \\
-54 & -39 & -19 & -9 & -6 & -8 & -2 & -4 \\
9 & 6 & 2 & 1 & 2 & 1 & 0 & 1 \\
-6 & -5 & -3 & -2 & 1 & -1 & 0 & 0 \\
-32 & -24 & -13 & -6 & -2 & -5 & -1 & -2 \\
-10 & -7 & -2 & 0 & -3 & 0 & 3 & -2 \\
-4 & -3 & -2 & -1 & 0 & -1 & -1 & 0 \\
17 & 12 & 6 & 3 & 2 & 3 & 2 & 1
\end{array}\right]
$$

12-4-08

