Jordan Canonical Form of a Nilpotent Matrix

Math 422

Schur’s Triangularization Theorem tells us that every matrix A is unitarily similar to an upper triangular
matrix T'. However, the only thing certain at this point is that the the diagonal entries of T" are the eigenvalues
of A. The off-diagonal entries of T" seem unpredictable and out of control. Recall that the Core-Nilpotent
Decomposition of a singular matrix A of index k produces a block diagonal matrix

C 0
o1
similar to A in which C'is non-singular, rank (C) = rank (A¥) , and L is nilpotent of index k. Is it possible
to simplify C' and L via similarity transformations and obtain triangular matrices whose off-diagonal entries
are predictable? The goal of this lecture is to do exactly this for nilpotent matrices.

Let L be an n x n nilpotent matrix of index k. Then L*~! # 0 and L* = 0. Let’s compute the eigenvalues
of L. Suppose x # 0 satisfies Lz = A\x; then 0 = LFz = LF=1 (Lz) = LF~! (\z) = \LF 1o = ALF2 (Lz) =
NLF27 = ... = Mg thus A = 0 is the only eigenvalue of L.

Now if L is diagonalizable, there is an invertible matrix P and a diagonal matrix D such that P~1LP = D.
Since the diagonal entries of D are the eigenvalues of L, and A = 0 is the only eigenvalue of L, we have
D = 0. Solving P"'LP =0 for L gives L = 0. Thus a diagonalizable nilpotent matrix is the zero matrix, or
equivalently, a non-zero nilpotent matrix L is not diagonalizable. And indeed, some off-diagonal entries in

the “simplified” form of L will be non-zero.
Let L be a non-zero nilpotent matrix. Since L is triangularizable, there exists an invertible P such that

P—lLP: 0 0 Lok
: . ek

The simplification procedure given in this lecture produces a matrix similar to L whose non-zero entries lie
exclusively on the superdiagonal of P~!LP. An example of this procedure follows below.

Definition 1 Let L be nilpotent of index k and define L° = I. For p = 1,2,...,k, let z € C™ such that
y = LP~ 1z £ 0. The Jordan chain on y of length p is the set {Lp_lm, . ,La:,a;}.

Exercise 2 Let L be nilpotent of index k. If x € C" satisfies L* " 2 # 0, prove that {Lkilx, ..., Lz,x}is
linearly independent.

0 2 0 0 3 a
Example 3 Let L= | 0 3 |:thenl?=10 0 0 | and L>=0. Letxz= | b |; then
0 0 0 0 0 c

1
0
0

Note that {L?z, Lz, x} is linearly independent iff ¢ # 0. Thus if x = [1 2 3]T, theny = L?>x =1[9 0 O]T and
the Jordan chain on y is

0 1 2 a b+ 2c 0 0 3 a 3c
Lz=|0 0 3 b | = 3c and I’Pz=10 0 0 bl=1]0
00 0 c 0 00 0 c 0

9 8 1
011,191, 2
0 0 3
Form the matrix
9 8 1
P:[L2$|L:r|:r]: 09 2 |;
0 0 3



then

L [T 01 2 9 8 1 010
P‘lLP:gs 0 27 -18 0 0 3 09 2(=]001
0 0 81 00 0 00 3 0 0O

is the “Jordan form” of L.

Since A = 0 is the only eigenvalue of an n X n non-zero nilpotent L, the eigenvectors of L are exactly
the non-zero vectors in NV (L). But dim NV (L) < n since L is not diagonalizable and possesses an incomplete
set of linearly independent eigenvectors. So the process by which one constructs the desired similarity
transformation P~ LP involves appropriately extending a deficient basis for N (L) to a basis for C*. This
process has essentially two steps:

e Construct a somewhat special basis B for N (L).

e Extend B to a basis for C" by building Jordan chains on the elements of 5.

Definition 4 A nilpotent Jordan block is a matriz of the form

01 0 0
00 1 0
000 . 0
R 1
L0 0 0 0 |

A nilpotent Jordan matriz is a block diagonal matrix of the form

Ji 0 0

0 Jo 0 (1)
0

0 0 Im

where each J; is a nilpotent Jordan block.
When the context is clear we refer to a nilpotent Jordan matrix as a Jordan matrix.
Theorem 5 FEvery n x n nilpotent matriz L of index k is similar to an n x n Jordan matrix J in which

o the number of Jordan blocks is dim N (L) ;
e the size of the largest Jordan block is k X k;

o for1l < j <k, the number of j x j Jordan blocks is

rank (Ljfl) — 2rank (Lj) + rank (Ljﬂ) ;
e the ordering of the J;’s is arbitrary.

Whereas the essentials of the proof appear in the algorithm below, we omit the details.

Definition 6 If L is a nilpotent matriz, a Jordan form of L is a Jordan matriz J = P~'LP. The Jordan
structure of L is the number and size of the Jordan blocks in every Jordan form J of L.

Theorem 5 tells us that Jordan form is unique up to ordering of the blocks J;. Indeed, given any prescribed
ordering, there is a Jordan form whose Jordan blocks appear in that prescribed order.



Definition 7 The Jordan Canonical Form (JCF) of a nilpotent matriz L is the Jordan form of L in which
the Jordan blocks are distributed along the diagonal in order of decreasing size.

Example 8 Let us determine the Jordan structure and JCF of the nilpotent matriz

1 1 -2 0 1 -1 100 -2 3 —3
3 1 5 1 -1 3 0 1 0 i _8 3
I = -2 -1 0 0 -1 0 V'U’UJﬂ)UCC 0 0 1 g 7% % .
2 1 0 0 1 0 0 0 O 0 0 (N
-5 -3 -1 -1 -1 -1 0 0 0 0 0 0
-3 -2 -1 -1 0 -1 0 0 O 0 0 0
the number of Jordan blocks is dim N (L) = 3. Then
6 3 3 1 1 2 11111
-6 -3 -3 -1 -1 -2 00 0 0 0 O
L2 _ 0 0 0 0 0 0 rowﬂi}uce 0 0 0 0 0 O
0 0 0 0 0 0 00 0 0 0 O
-6 -3 -3 -1 -1 -2 00 0 0 0 O
| -6 -3 -3 -1 -1 -2 ] 100 0 0 0 0

has rank 1 and L = 0; therefore the index (L) = 3 and the size of the largest Jordan block is 3 x 3. Let

ro= rank (L% =6
ri= rank(L') =
ro= rank(L?) =1 ;
rg = rank (L3 =0
ry = rank (L4 =0

then the number n; of i X © Jordan blocks is

ny = 7’0—2T1+7’2:1
ng= 1 —2ro+r3=1.
ng= ro—2r3+ry=1

Obtain the JCF by distributing these blocks along the diagonal in order of decreasing size. Then the JCF of
L is

OO oo O O
OO Olo O O
OO =O OO
OO Olo O O

OO OIS O
OO OO = O

This leaves us with the task of determining a non-singular matrix P such that P~'LP is the JCF of L.
As mentioned above, this process has essentially two steps. A detailed algorithm follows our next definition
and a key exercise.

Definition 9 Let E be any row-echelon form of a matriv A. Let c1, . .., cq index the columns of E containing
leading 1’s and let y; denote the ci" column of A. The columns yi,...,y, are called the basic columns of A.

Exercise 10 Let B = [b1|---|by] be an n x p matriz with linearly independent columns. Prove that
multiplication by B preserves linear independence, i.e., if {vi,...,vs} is linearly independent in CP, then
{Buv1,...,Bu} is linearly independent in C™.



Nilpotent Reduction to JCF

Given a nilpotent matrix L of index k, set ¢ = k — 1 and let Sx—1 = {v1,...,yq} be the basic columns of
LF-1,

1. Extend Sj_1U---US; to a basis for R (L*~1) N N (L) in the following way:

a) Let 1b1,..., e the basic columns of Li~! and let B = 1] .
Let {b by} be the basi 1 f L~! and let B =[b by

(b) Solve LBz = 0 for z and obtain a basis {v1,...,vs} for N (LB); then {Bui,...,Bvs} is a basis
for R (L"=') NN (L) by Lemma 11 below.

(c¢) Form the matrix [y1 | - |yy | Bvi |-+ | Bvs]; its basic columns {yl, oy Yq, Bug,, ...,ngj}
form a basis for R (L*~') N N (L) containing Sx_1 U --- U S;. Let

Si_1= {Bv/gl, .. .,BU,@J_} .

(d) Decrement i, let {yi,...,y,} be the basic columns of L?, and repeat step 1 until ¢ = 0. Then
Sk U---USy ={b1,...,b} is a basis for N (L).

2. For each j,if b; € §;, find a particular solution z; of Lix = b; and build a Jordan chain {Lixj, ..., Lz, xj} .
Set ‘
py = [Lia; |+ | Lay | 23]

the desired similarity transformation is defined by the matrix
P=Ilpi|--|p].
Lemma 11 In the notation of the algorithm above, {Buy, ..., Buv} is a basis for R (L") NN (L).
Proof. Note that Bv; € R(B) and LBv; = 0 implies Bv; € N (L). But R(B) = R(L""!) implies that
Bvj € R(B)NN (L) for all j. The set {Bvi, ..., Bv,} is linearly independent by Exercise 10. To show that
{Bv1,...,Buvs} spans R(B)NN (L),let y € R(B)NN (L) . Since y € R (B), there is some v € C™ such that
y = Bu; since y € N (L), 0= Ly = LBu. Thus v € N (LB) and we may express u in the basis {v1,...,vs}

as u = c1v1 +- - - +csvs. Therefore y = Bu = B(cjv1 + - - + ¢svs) = ¢c1Buy+- - - +¢;Bvs and {Buvy, ..., Bus}
spans. H

Example 12 Let’s construct the matriz P that produces the Jordan form of L in Example 8. Since L has
index 3, we row-reduce L? and find one basic column

Y1 = [6a 767 07 Oa 767 76}T :
Then Sy = {y1} contains the basic column of R (L?); set i =2.

1. Extend Sz to a basis for R(L)N N (L):

(a) Row-reducing, we find that the basic columns of L are its first three columns. Thus we let

1 1 -2

3 1 )

-2 -1 0

B= 2 1 0
-5 =3 -1

-3 -2 -1



(b) Compute LB and solve LBx = 0 to obtain a basis for N (LB):

1 1 -2 0 1 -1 1 1 -2 6 3 3
3 1 ) 1 -1 3 3 1 5 -6 -3 -3
-2 -1 0 0 -1 0 -2 -1 0 0 0 0
LB = 2 1 0 0 1 0 2 1 0| 0 0 0
-5 -3 -1 -1 -1 -1 -5 -3 -1 -6 -3 -3
-3 -2 -1 -1 0 -1 -3 -2 -1 -6 -3 -3
6 3 3 2 11
-6 -3 -3 0 00
0 0 0 row-ﬂl}uce 0 0 O
0 0 0 0 00
-6 -3 -3 0 00
-6 -3 -3 0 0 0
-1 -1
v = 2 , Vg = 0
0 2

Then {Bv1:[1 ~100 -1 —1]", By =[-572 —231]T} is a basis for R(L) NN (L).

(¢) Form the matriz

6 1 -5 1 £ 0
-6 -1 7 0 0 1
o 0 0 2 row-reduce 0 0 O
[yl | B'U1 | B/UQ] - 0 0 -2 - 0 0 0 )
-6 —1 3 0 0 O
—6 —1 1 0 0 0

columns 1 and 3 are its basic columns, hence {y1,y2 = Bua} is a basis for R(L)NN (L) containing
82. Let

81:{[—572 ~23 1]T}
and decrement i; then i = 1.
2. Extend Sy U8 = {y1,y2} to a basis for R (L°) NN (L) = N (L):

(a) Since L° =1, we let B =1.
(b) Since LB = L, we find a basis for N (LB) = N (L):

1 1 -2 0 1 -1 100 -2 4 -1
3 1 5 1 -1 3 01 0 2 —3 2
-2 -1 0 0 -1 0 rou;ﬂ?Lae 0 0 1 % —g %
2 1 0 0 1 0 0 0 O 0 0 0
-5 -3 -1 -1 -1 -1 0 0 O 0 0 0
-3 -2 -1 -1 0 -1 0 0 O 0 0 0
[ 2 [ —4 7 [ 1]
4 5 -2
-1 2 —2
v = 3 , U2 = 0 , U3 = 0
0 3 0
| 0] | 0] | 3]

Then a basis for N (L) is
{Bvl, BUQ, B’Ug} = {Ul, V2, 1}3} .



(¢) Form the matriz

6 -5 2 —4 1 1 00 & -3

-6 7 —4 5 =2 010 % —%

O 2 -1 2 -2 row-reduce 0 O 1 1 —1
il vl o=\ o 5 5 § — 0000 0]’

-6 3 0 3 0 000 0 0

-6 1 0 0 3 000 0 O

columns 1,2, and 3 are its basic columns, hence {y1,y2,v1} s a a basis for N (L) containing
82 U Sl. Let

50:{[2 —4 —1300]T}
and decrement i; then i = 0 and the process terminates having produced the basis So US; USy for
N (L).
3. Let So = {b1}, S1 = {b2}, and Sp = {bs}. For j =1,2,3, build a Jordan chain on b; € S; of length

i+ 1 by finding a particular solution x; of L'z = b;. When j = 1 we see by inspection that L*e; = b.
Thus

6 1 1
-6 3 0
0 -2 0
pP1 = [L2€1 | L61 | 61] = 0 2 0
-6 -5 0
-6 -3 0
When j = 2 we solve Lx = bsy:
1 1 -2 0 1 -1 | -5 100—§§—§|—1
3 1 5 1 -1 3| 7 010 i T3 i | 0
_2 _1 O O _1 O | 2 row-reduce O 0 1 g _g g | 2
2 1 0 0 1 o0 | -2 0 0 0 0 0 0] O
-5 -3 -1 -1 -1 -1 | 3 0 0O 0 0 0] O
-3 -2 -1 -1 0 -1 | 1 0 0 0 0 0 0] O
A particular solution is x5 = [~1 0200 0]" ; hence
-5 -1
7 0
2 2
b2 = [Lx? | ‘T2] = 2 0
3 0
1 0

When j = 3 we have L° = I, and the unique solution of L’z = bs is x = by € Sy. Thus the Jordan
chain on bz consists only of by and we have ps =[2 —4 —130 O]T. Finally, we form the matriz

6 1 1 -5 -1 2
—6 3 0 7 0 —4
0 -2 0 2 2 -1
P=lplplpsl=| g 9 ¢ 2 o 3
-6 -5 0 3 0 0
-6 -3 0 1 0 0
Then as expected, the JCF of L is
0 1 0[O0 0]O
0 0 1({0 0]O
0O 0 0|0 O0]O
_plrp_
J=PLP= 0O 0 0|0 170
0O 0 0[O0 O0]O
0 0 0[O0 O0]O




Exercise 13 A Hessenberg matriz H and a Jordan matriz J appear below. Find an invertible matrixz P
such that J = P"YHP. (Note: Some texts define the JCF with 1’s below the main diagonal as in H.)

0 0 0O 01 00

1 0 0 0 0 01 0
H = 01 00 pdJ= 0 0 0 1

0 01 0 0 0 0O

Exercise 14 Prove that the Jordan matrices

01 0 0 01 00O

0 0 1 0 0 01 0
=10 001|000 o0

0 0 0O 0 0 0O

are not similar. (Hint: Show that if P = (pi;) is a 4 X 4 matriz such that PJy, = JoP, then P is not
invertible. )

Exercise 15 A 4 x 4 nilpotent matriz L is given below. Find matrices P and J such that P~'LP = J has
Jordan form:
3 3 2 1
-2 -1 -1 -1
1 -1 0 1
-5 —4 -3 -2

L=

Exercise 16 Consider the 5 X 5 matrix:

2 1 2 0 —1
3 1 3 -1 1
L=| -3 -1 =2 0 2
3 2 4 0 -1
2 1 2 0 -1

a. Show that L is nilpotent and determine its index of nilpotency.
b. Find the Jordan Form J of L.

¢. Find an invertible matrix P such that J = P~'LP.

Exercise 17 Determine the Jordan structure of the following 8 x 8 nilpotent matriz:

41 30 15 7T 4 6 1 3
-4 -39 -19 -9 -6 -8 -2 —4
9 6 2 1 2 1 0 1
-6 -5 -3 -2 1 -1 0 0
-32 -24 -13 -6 -2 -5 -1 =2
-10 -7 =2 0 -3 0 3 =2
-4 -3 -2 -1 0 -1 -1 0
17 12 6 3 2 3 2 1
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