
Jordan Canonical Form of a Nilpotent Matrix

Math 422

Schur’s Triangularization Theorem tells us that every matrix A is unitarily similar to an upper triangular
matrix T . However, the only thing certain at this point is that the the diagonal entries of T are the eigenvalues
of A. The off-diagonal entries of T seem unpredictable and out of control. Recall that the Core-Nilpotent
Decomposition of a singular matrix A of index k produces a block diagonal matrix∙

C 0
0 L

¸
similar to A in which C is non-singular, rank (C) = rank

¡
Ak
¢
, and L is nilpotent of index k. Is it possible

to simplify C and L via similarity transformations and obtain triangular matrices whose off-diagonal entries
are predictable? The goal of this lecture is to do exactly this for nilpotent matrices.
Let L be an n×n nilpotent matrix of index k. Then Lk−1 6= 0 and Lk = 0. Let’s compute the eigenvalues

of L. Suppose x 6= 0 satisfies Lx = λx; then 0 = Lkx = Lk−1 (Lx) = Lk−1 (λx) = λLk−1x = λLk−2 (Lx) =
λ2Lk−2x = · · · = λkx; thus λ = 0 is the only eigenvalue of L.
Now if L is diagonalizable, there is an invertible matrix P and a diagonal matrixD such that P−1LP = D.

Since the diagonal entries of D are the eigenvalues of L, and λ = 0 is the only eigenvalue of L, we have
D = 0. Solving P−1LP = 0 for L gives L = 0. Thus a diagonalizable nilpotent matrix is the zero matrix, or
equivalently, a non-zero nilpotent matrix L is not diagonalizable. And indeed, some off-diagonal entries in
the “simplified” form of L will be non-zero.
Let L be a non-zero nilpotent matrix. Since L is triangularizable, there exists an invertible P such that

P−1LP =

⎡⎢⎢⎢⎢⎣
0 ∗ · · · ∗

0 0
. . . ∗

...
...

. . . ∗
0 0 · · · 0

⎤⎥⎥⎥⎥⎦ .
The simplification procedure given in this lecture produces a matrix similar to L whose non-zero entries lie
exclusively on the superdiagonal of P−1LP. An example of this procedure follows below.

Definition 1 Let L be nilpotent of index k and define L0 = I. For p = 1, 2, . . . , k, let x ∈ Cn such that
y = Lp−1x 6= 0. The Jordan chain on y of length p is the set

©
Lp−1x, . . . , Lx, x

ª
.

Exercise 2 Let L be nilpotent of index k. If x ∈ Cn satisfies Lk−1x 6= 0, prove that
©
Lk−1x, . . . , Lx, x} is

linearly independent.

Example 3 Let L =

⎡⎣ 0 1 2
0 0 3
0 0 0

⎤⎦ ; then L2 =

⎡⎣ 0 0 3
0 0 0
0 0 0

⎤⎦ and L3 = 0. Let x =
⎡⎣ a

b
c

⎤⎦ ; then
Lx =

⎡⎣ 0 1 2
0 0 3
0 0 0

⎤⎦⎡⎣ a
b
c

⎤⎦ =
⎡⎣ b+ 2c

3c
0

⎤⎦ and L2x =

⎡⎣ 0 0 3
0 0 0
0 0 0

⎤⎦⎡⎣ a
b
c

⎤⎦ =
⎡⎣ 3c
0
0

⎤⎦ .
Note that

©
L2x,Lx, x

ª
is linearly independent iff c 6= 0. Thus if x = [1 2 3]T , then y = L2x = [9 0 0]

T and
the Jordan chain on y is ⎧⎨⎩

⎡⎣ 9
0
0

⎤⎦ ,
⎡⎣ 8
9
0

⎤⎦ ,
⎡⎣ 1
2
3

⎤⎦⎫⎬⎭
Form the matrix

P =
£
L2x | Lx | x

¤
=

⎡⎣ 9 8 1
0 9 2
0 0 3

⎤⎦ ;
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then

P−1LP =
1

243

⎡⎣ 27 −24 7
0 27 −18
0 0 81

⎤⎦⎡⎣ 0 1 2
0 0 3
0 0 0

⎤⎦⎡⎣ 9 8 1
0 9 2
0 0 3

⎤⎦ =
⎡⎣ 0 1 0
0 0 1
0 0 0

⎤⎦
is the “Jordan form” of L.

Since λ = 0 is the only eigenvalue of an n × n non-zero nilpotent L, the eigenvectors of L are exactly
the non-zero vectors in N (L). But dimN (L) < n since L is not diagonalizable and possesses an incomplete
set of linearly independent eigenvectors. So the process by which one constructs the desired similarity
transformation P−1LP involves appropriately extending a deficient basis for N (L) to a basis for Cn. This
process has essentially two steps:

• Construct a somewhat special basis B for N (L) .

• Extend B to a basis for Cn by building Jordan chains on the elements of B.

Definition 4 A nilpotent Jordan block is a matrix of the form⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0

0 0 1
. . . 0

0 0 0
. . . 0

...
...
...
. . . 1

0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
.

A nilpotent Jordan matrix is a block diagonal matrix of the form

⎡⎢⎢⎢⎢⎣
J1 0 · · · 0

0 J2
. . . 0

...
...

. . . 0
0 0 · · · Jm

⎤⎥⎥⎥⎥⎦ , (1)

where each Ji is a nilpotent Jordan block.

When the context is clear we refer to a nilpotent Jordan matrix as a Jordan matrix.

Theorem 5 Every n× n nilpotent matrix L of index k is similar to an n× n Jordan matrix J in which

• the number of Jordan blocks is dimN (L) ;

• the size of the largest Jordan block is k × k;

• for 1 ≤ j ≤ k, the number of j × j Jordan blocks is

rank
¡
Lj−1

¢
− 2rank

¡
Lj
¢
+ rank

¡
Lj+1

¢
;

• the ordering of the Ji’s is arbitrary.

Whereas the essentials of the proof appear in the algorithm below, we omit the details.

Definition 6 If L is a nilpotent matrix, a Jordan form of L is a Jordan matrix J = P−1LP. The Jordan
structure of L is the number and size of the Jordan blocks in every Jordan form J of L.

Theorem 5 tells us that Jordan form is unique up to ordering of the blocks Ji. Indeed, given any prescribed
ordering, there is a Jordan form whose Jordan blocks appear in that prescribed order.
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Definition 7 The Jordan Canonical Form (JCF) of a nilpotent matrix L is the Jordan form of L in which
the Jordan blocks are distributed along the diagonal in order of decreasing size.

Example 8 Let us determine the Jordan structure and JCF of the nilpotent matrix

L =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 −2 0 1 −1
3 1 5 1 −1 3
−2 −1 0 0 −1 0
2 1 0 0 1 0
−5 −3 −1 −1 −1 −1
−3 −2 −1 −1 0 −1

⎤⎥⎥⎥⎥⎥⎥⎦
row-reduce−→

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 −23

4
3 −13

0 1 0 4
3 −53

2
3

0 0 1 1
3 −23

2
3

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ;

the number of Jordan blocks is dimN (L) = 3. Then

L2 =

⎡⎢⎢⎢⎢⎢⎢⎣
6 3 3 1 1 2
−6 −3 −3 −1 −1 −2
0 0 0 0 0 0
0 0 0 0 0 0
−6 −3 −3 −1 −1 −2
−6 −3 −3 −1 −1 −2

⎤⎥⎥⎥⎥⎥⎥⎦
row-reduce−→

⎡⎢⎢⎢⎢⎢⎢⎣
1 1

2
1
2

1
6

1
6

1
3

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
has rank 1 and L3 = 0; therefore the index (L) = 3 and the size of the largest Jordan block is 3× 3. Let

r0 = rank
¡
L0
¢
= 6

r1 = rank
¡
L1
¢
= 3

r2 = rank
¡
L2
¢
= 1

r3 = rank
¡
L3
¢
= 0

r4 = rank
¡
L4
¢
= 0

;

then the number ni of i× i Jordan blocks is

n1 = r0 − 2r1 + r2 = 1
n2 = r1 − 2r2 + r3 = 1
n3 = r2 − 2r3 + r4 = 1

.

Obtain the JCF by distributing these blocks along the diagonal in order of decreasing size. Then the JCF of
L is ⎡⎢⎢⎢⎢⎢⎢⎣

0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

This leaves us with the task of determining a non-singular matrix P such that P−1LP is the JCF of L.
As mentioned above, this process has essentially two steps. A detailed algorithm follows our next definition
and a key exercise.

Definition 9 Let E be any row-echelon form of a matrix A. Let c1, . . . , cq index the columns of E containing
leading 1’s and let yi denote the cthi column of A. The columns y1, . . . , yq are called the basic columns of A.

Exercise 10 Let B = [b1 | · · · | bp] be an n × p matrix with linearly independent columns. Prove that
multiplication by B preserves linear independence, i.e., if {v1, . . . , vs} is linearly independent in Cp, then
{Bv1, . . . , Bvs} is linearly independent in Cn.
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Nilpotent Reduction to JCF

Given a nilpotent matrix L of index k, set i = k − 1 and let Sk−1 = {y1, . . . , yq} be the basic columns of
Lk−1.

1. Extend Sk−1 ∪ · · · ∪ Si to a basis for R
¡
Li−1

¢
∩N (L) in the following way:

(a) Let {b1, . . . , bp} be the basic columns of Li−1 and let B = [b1 | · · · | bp] .
(b) Solve LBx = 0 for x and obtain a basis {v1, . . . , vs} for N (LB) ; then {Bv1, . . . , Bvs} is a basis

for R
¡
Li−1

¢
∩N (L) by Lemma 11 below.

(c) Form the matrix [y1 | · · · | yq | Bv1 | · · · | Bvs] ; its basic columns
n
y1, . . . , yq, Bvβ1 , . . . , Bvβj

o
form a basis for R

¡
Li−1

¢
∩N (L) containing Sk−1 ∪ · · · ∪ Si. Let

Si−1 =
n
Bvβ1 , . . . , Bvβj

o
.

(d) Decrement i, let {y1, . . . , yq} be the basic columns of Li, and repeat step 1 until i = 0. Then
Sk−1 ∪ · · · ∪ S0 = {b1, . . . , bt} is a basis for N (L).

2. For each j, if bj ∈ Si, find a particular solution xj of Lix = bj and build a Jordan chain
©
Lixj , . . . , Lxj , xj

ª
.

Set
pj =

£
Lixj | · · · | Lxj | xj

¤
;

the desired similarity transformation is defined by the matrix

P = [p1 | · · · | pt] .

Lemma 11 In the notation of the algorithm above, {Bv1, . . . , Bvs} is a basis for R
¡
Li−1

¢
∩N (L).

Proof. Note that Bvj ∈ R (B) and LBvj = 0 implies Bvj ∈ N (L) . But R (B) = R
¡
Li−1

¢
implies that

Bvj ∈ R (B) ∩N (L) for all j. The set {Bv1, . . . , Bvs} is linearly independent by Exercise 10. To show that
{Bv1, . . . , Bvs} spans R (B)∩N (L), let y ∈ R (B)∩N (L) . Since y ∈ R (B) , there is some u ∈ Cn such that
y = Bu; since y ∈ N (L) , 0 = Ly = LBu. Thus u ∈ N (LB) and we may express u in the basis {v1, . . . , vs}
as u = c1v1+ · · ·+csvs. Therefore y = Bu = B (c1v1 + · · ·+ csvs) = c1Bv1+ · · ·+csBvs and {Bv1, . . . , Bvs}
spans.

Example 12 Let’s construct the matrix P that produces the Jordan form of L in Example 8. Since L has
index 3, we row-reduce L2 and find one basic column

y1 = [6,−6, 0, 0,−6,−6]T .

Then S2 = {y1} contains the basic column of R
¡
L2
¢
; set i = 2.

1. Extend S2 to a basis for R (L) ∩N (L):

(a) Row-reducing, we find that the basic columns of L are its first three columns. Thus we let

B =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 −2
3 1 5
−2 −1 0
2 1 0
−5 −3 −1
−3 −2 −1

⎤⎥⎥⎥⎥⎥⎥⎦ .
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(b) Compute LB and solve LBx = 0 to obtain a basis for N (LB):

LB =

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 −2 0 1 −1
3 1 5 1 −1 3
−2 −1 0 0 −1 0
2 1 0 0 1 0
−5 −3 −1 −1 −1 −1
−3 −2 −1 −1 0 −1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣
1 1 −2
3 1 5
−2 −1 0
2 1 0
−5 −3 −1
−3 −2 −1

⎤⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎣

6 3 3
−6 −3 −3
0 0 0
0 0 0
−6 −3 −3
−6 −3 −3

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎣

6 3 3
−6 −3 −3
0 0 0
0 0 0
−6 −3 −3
−6 −3 −3

⎤⎥⎥⎥⎥⎥⎥⎦
row-reduce−→

⎡⎢⎢⎢⎢⎢⎢⎣
2 1 1
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
⎧⎨⎩v1 =

⎡⎣ −12
0

⎤⎦ , v2 =
⎡⎣ −10

2

⎤⎦⎫⎬⎭ .

Then
n
Bv1 = [1 − 1 0 0 − 1 − 1]T , Bv2 = [−5 7 2 − 2 3 1]T

o
is a basis for R (L) ∩N (L) .

(c) Form the matrix

[y1 | Bv1 | Bv2] =

⎡⎢⎢⎢⎢⎢⎢⎣
6 1 −5
−6 −1 7
0 0 2
0 0 −2
−6 −1 3
−6 −1 1

⎤⎥⎥⎥⎥⎥⎥⎦
row-reduce−→

⎡⎢⎢⎢⎢⎢⎢⎣
1 1

6 0
0 0 1
0 0 0
0 0 0
0 0 0
0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ;

columns 1 and 3 are its basic columns, hence {y1, y2 = Bv2} is a basis for R (L)∩N (L) containing
S2. Let

S1 =
n
[−5 7 2 − 2 3 1]T

o
and decrement i; then i = 1.

2. Extend S2 ∪ S1 = {y1, y2} to a basis for R
¡
L0
¢
∩N (L) = N (L):

(a) Since L0 = I, we let B = I.

(b) Since LB = L, we find a basis for N (LB) = N (L):⎡⎢⎢⎢⎢⎢⎢⎣
1 1 −2 0 1 −1
3 1 5 1 −1 3
−2 −1 0 0 −1 0
2 1 0 0 1 0
−5 −3 −1 −1 −1 −1
−3 −2 −1 −1 0 −1

⎤⎥⎥⎥⎥⎥⎥⎦
row-reduce−→

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 −23

4
3 −13

0 1 0 4
3 −53

2
3

0 0 1 1
3 −23

2
3

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
v1 =

⎡⎢⎢⎢⎢⎢⎢⎣
2
−4
−1
3
0
0

⎤⎥⎥⎥⎥⎥⎥⎦ , v2 =
⎡⎢⎢⎢⎢⎢⎢⎣
−4
5
2
0
3
0

⎤⎥⎥⎥⎥⎥⎥⎦ , v3 =
⎡⎢⎢⎢⎢⎢⎢⎣

1
−2
−2
0
0
3

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
.

Then a basis for N (L) is
{Bv1, Bv2, Bv3} = {v1, v2, v3} .
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(c) Form the matrix

[y1 | y2 | v1 | v2 | v3] =

⎡⎢⎢⎢⎢⎢⎢⎣
6 −5 2 −4 1
−6 7 −4 5 −2
0 2 −1 2 −2
0 −2 3 0 0
−6 3 0 3 0
−6 1 0 0 3

⎤⎥⎥⎥⎥⎥⎥⎦
row-reduce−→

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 1

4 −34
0 1 0 3

2 −32
0 0 1 1 −1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ ;

columns 1,2, and 3 are its basic columns, hence {y1, y2, v1} is a a basis for N (L) containing
S2 ∪ S1. Let

S0 =
n
[2 − 4 − 1 3 0 0]T

o
and decrement i; then i = 0 and the process terminates having produced the basis S2 ∪S1 ∪ S0 for
N (L).

3. Let S2 = {b1} , S1 = {b2} , and S0 = {b3}. For j = 1, 2, 3, build a Jordan chain on bj ∈ Si of length
i+ 1 by finding a particular solution xj of Lix = bj . When j = 1 we see by inspection that L2e1 = b1.
Thus

p1 =
£
L2e1 | Le1 | e1

¤
=

⎡⎢⎢⎢⎢⎢⎢⎣
6 1 1
−6 3 0
0 −2 0
0 2 0
−6 −5 0
−6 −3 0

⎤⎥⎥⎥⎥⎥⎥⎦ .
When j = 2 we solve Lx = b2:⎡⎢⎢⎢⎢⎢⎢⎣

1 1 −2 0 1 −1 | −5
3 1 5 1 −1 3 | 7
−2 −1 0 0 −1 0 | 2
2 1 0 0 1 0 | −2
−5 −3 −1 −1 −1 −1 | 3
−3 −2 −1 −1 0 −1 | 1

⎤⎥⎥⎥⎥⎥⎥⎦
row-reduce−→

⎡⎢⎢⎢⎢⎢⎢⎣
1 0 0 −23

4
3 −13 | −1

0 1 0 4
3 − 53

2
3 | 0

0 0 1 1
3 − 23

2
3 | 2

0 0 0 0 0 0 | 0
0 0 0 0 0 0 | 0
0 0 0 0 0 0 | 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

A particular solution is x2 = [−1 0 2 0 0 0]T ; hence

p2 = [Lx2 | x2] =

⎡⎢⎢⎢⎢⎢⎢⎣
−5 −1
7 0
2 2
−2 0
3 0
1 0

⎤⎥⎥⎥⎥⎥⎥⎦ .

When j = 3 we have L0 = I, and the unique solution of L0x = b3 is x = b3 ∈ S0. Thus the Jordan
chain on b3 consists only of b3 and we have p3 = [2 − 4 − 1 3 0 0]T . Finally, we form the matrix

P = [p1 | p2 | p3] =

⎡⎢⎢⎢⎢⎢⎢⎣
6 1 1 −5 −1 2
−6 3 0 7 0 −4
0 −2 0 2 2 −1
0 2 0 −2 0 3
−6 −5 0 3 0 0
−6 −3 0 1 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .
Then as expected, the JCF of L is

J = P−1LP =

⎡⎢⎢⎢⎢⎢⎢⎣
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ .
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Exercise 13 A Hessenberg matrix H and a Jordan matrix J appear below. Find an invertible matrix P
such that J = P−1HP. (Note: Some texts define the JCF with 1’s below the main diagonal as in H.)

H =

⎡⎢⎢⎣
0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎦ ; J =

⎡⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎦ .

Exercise 14 Prove that the Jordan matrices

J1 =

⎡⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤⎥⎥⎦ , J2 =

⎡⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎦
are not similar. (Hint: Show that if P = (pij) is a 4 × 4 matrix such that PJ1 = J2P, then P is not
invertible.)

Exercise 15 A 4× 4 nilpotent matrix L is given below. Find matrices P and J such that P−1LP = J has
Jordan form:

L =

⎡⎢⎢⎣
3 3 2 1
−2 −1 −1 −1
1 −1 0 1
−5 −4 −3 −2

⎤⎥⎥⎦ .
Exercise 16 Consider the 5× 5 matrix:

L =

⎡⎢⎢⎢⎢⎣
2 1 2 0 −1
3 1 3 −1 1
−3 −1 −2 0 2
3 2 4 0 −1
2 1 2 0 −1

⎤⎥⎥⎥⎥⎦ .
a. Show that L is nilpotent and determine its index of nilpotency.

b. Find the Jordan Form J of L.

c. Find an invertible matrix P such that J = P−1LP.

Exercise 17 Determine the Jordan structure of the following 8× 8 nilpotent matrix:

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

41 30 15 7 4 6 1 3
−54 −39 −19 −9 −6 −8 −2 −4
9 6 2 1 2 1 0 1
−6 −5 −3 −2 1 −1 0 0
−32 −24 −13 −6 −2 −5 −1 −2
−10 −7 −2 0 −3 0 3 −2
−4 −3 −2 −1 0 −1 −1 0
17 12 6 3 2 3 2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

12-4-08
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