Quadratic Forms

Math 422

Definition 1 A quadratic form is a function $f : \mathbb{R}^n \to \mathbb{R}$ of form

$$f(\mathbf{x}) = \mathbf{x}^T A \mathbf{x},$$

where A is an $n \times n$ symmetric matrix.

Example 2
$$f(x,y) = 2x^2 + 3xy - 4y^2 = \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} 2 & \frac{3}{2} \\ \frac{3}{2} & -4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}.$$

Note that the Euclidean inner product (dot product) of two (column) vectors \mathbf{a} and \mathbf{b} can be expressed in terms of matrix multiplication as

$$\langle \mathbf{a}, \mathbf{b} \rangle = \mathbf{b}^T \mathbf{a}$$

Thus, a quadratic form can be expressed in terms of the Euclidean inner product as

$$\mathbf{x}^T A \mathbf{x} = \langle A \mathbf{x}, \mathbf{x} \rangle = \langle \mathbf{x}, A \mathbf{x} \rangle.$$

Let S^{n-1} denote the unit (n-1)-dimensional sphere in \mathbb{R}^n , i.e., relative to the Euclidean inner product

$$S^{n-1} = \{ \mathbf{x} \in \mathbb{R}^n : \langle \mathbf{x}, \mathbf{x} \rangle = 1 \}$$

Since S^{n-1} is a closed and bounded subset of \mathbb{R}^n , continuous functions on S^{n-1} attain their maximum and minimum values.

Question #1: For $\mathbf{x} \in S^{n-1}$, what are the maximum and minimum values of a quadratic form $\mathbf{x}^T A \mathbf{x}$?

Theorem 3 Let A be a symmetric $n \times n$ matrix with eigenvalues $\lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_n$. Then

- 1. $\lambda_1 \geq \mathbf{x}^T A \mathbf{x} \geq \lambda_n$ for all $\mathbf{x} \in S^{n-1}$.
- 2. If $\mathbf{x}_1 \in S^{n-1}$ is an eigenvalue associated with λ_1 , then $\lambda_1 = \mathbf{x}_1^T A \mathbf{x}_1$.
- 3. If $\mathbf{x}_n \in S^{n-1}$ is an eigenvalue associated with λ_n , then $\lambda_n = \mathbf{x}_n^T A \mathbf{x}_n$.

The maximum and minimum of a quadratic form $\mathbf{x}^T A \mathbf{x}$ can be found by computing the largest and smallest eigenvalue of A. The maximum (respectively, minimum) will always be attained at diametrically opposite points on the unit sphere $\pm \frac{\mathbf{x}}{\|\mathbf{x}\|}$, where \mathbf{x} is any eigenvector associated with λ_1 (respectively, λ_n).

Example 4 Consider $f(x_1, x_2) = 2x_1x_2 = \begin{bmatrix} x_1 & x_2 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$. Since the eigenvalues of $A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$ are $\lambda_1 = 1$ and $\lambda_2 = -1$, the maximum and minimum values of f on the unit circle S^1 are 1 and -1, respectively. Furthermore, the maximum value is attained at the eigenvectors on S^1 associated with $\lambda_1 = 1$, namely $\pm \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$; the minimum value is attained at the eigenvectors on S^1 associated with $\lambda_2 = -1$, namely $\pm \begin{bmatrix} -1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$.

Question #2: Under what conditions is the quadratic form $\mathbf{x}^T A \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$?

Definition 5 $\mathbf{x}^T A \mathbf{x}$ is positive definite iff $\mathbf{x}^T A \mathbf{x} > 0$ for all $\mathbf{x} \neq \mathbf{0}$ and $\mathbf{x}^T A \mathbf{x} = 0$ iff $\mathbf{x} = \mathbf{0}$. A symmetric matrix is positive definite iff $\mathbf{x}^T A \mathbf{x}$ is positive definite.

Example 6 The Euclidean inner product is a positive definite quadratic form since

$$x_1^2 + \dots + x_n^2 = \langle \mathbf{x}, \mathbf{x} \rangle = \mathbf{x}^T \mathbf{x} = \mathbf{x}^T I \mathbf{x}.$$

Theorem 7 A symmetric matrix A is positive definite iff all eigenvalues of A are positive.

Example 8 The matrix $A = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{bmatrix}$ is positive definite since the eigenvalues of A are $\lambda_1 = 8$, $\lambda_2 = 2$ and $\lambda_3 = 2$. Note that if $\mathbf{x} \neq \mathbf{0}$, then $\mathbf{x}^T A \mathbf{x} = 2x_1^2 + 4x_2^2 + 4x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3 > 0$. **Definition 9** For $1 \le k \le n$, the k^{th} principal submatrix of an $n \times n$ matrix $A = [a_{ij}]$ is

Γ	a_{11}	• • •	a_{1k}	
	÷		÷	
	a_{k1}		a_{kk}	

Theorem 10 A symmetric matrix A is positive definite iff every principal subdeterminant of A is positive.

Example 11 The principal subdeterminants of the matrix $A = \begin{bmatrix} 2 & -1 & -3 \\ -1 & 2 & 4 \\ -3 & 4 & 9 \end{bmatrix}$ are det [2] = 2, det $\begin{bmatrix} 2 & -1 \\ -1 & 2 \end{bmatrix} = 3$ and det A = 1. Since all are positive, the quadratic form $\mathbf{x}^T A \mathbf{x}$ is positive definite.

Question #3: If $\mathbf{x}^T A \mathbf{x}$ is a quadratic form with non-diagonal A, under what conditions does there exist an orthogonal change variables $\mathbf{x} = P \mathbf{y}$ so that $(P \mathbf{y})^T A (P \mathbf{y}) = \mathbf{y}^T (P^T A P) \mathbf{y}$ has no cross-terms?

Definition 12 An $n \times n$ matrix A is <u>orthogonally diagonalizable</u> iff there exists an orthogonal matrix P such that $P^T A P$ is a diagonal matrix.

Theorem 13 If A is an $n \times n$ matrix, then the following are equivalent:

- 1. A is orthogonally diagonalizable.
- 2. A has an orthonormal set of n eigenvectors.
- 3. A is symmetric.

Theorem 14 If A is symmetric, then

- 1. The eigenvalues of A are real numbers.
- 2. Eigenvectors from different eigenspaces are orthogonal with respect to the Euclidean inner product.

Use the following procedure to orthogonally diagonalize A:

Example 15 1. Find a basis for each eigenspace of A.

- 2. Apply Gram-Schmidt and obtain an orthonormal basis for each eigenspace.
- 3. Form the matrix P whose columns are the basis vectors constructed in step 2.

Example 16 Consider the matrix $A = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{bmatrix}$ whose eigenvalues are $\lambda_1 = 8$, $\lambda_2 = 2$ and $\lambda_3 = 2$.

$$\begin{cases} \mathbf{v}_{2} = \frac{\mathbf{x}_{2}}{\|\mathbf{x}_{2}\|} = \begin{bmatrix} -1/\sqrt{2} \\ 0 \\ 1/\sqrt{2} \end{bmatrix}, \ \mathbf{v}_{3} = \frac{\mathbf{x}_{3} - \langle \mathbf{x}_{3}, \mathbf{v}_{2} \rangle \mathbf{v}_{2}}{\|\mathbf{x}_{3} - \langle \mathbf{x}_{3}, \mathbf{v}_{2} \rangle \mathbf{v}_{2}\|} = \begin{bmatrix} -1/\sqrt{6} \\ 2/\sqrt{6} \\ -1/\sqrt{6} \end{bmatrix} \end{cases}. \ The \ matrix P = \begin{bmatrix} 1/\sqrt{3} & -1/\sqrt{2} & -1/\sqrt{6} \\ 1/\sqrt{3} & 0 & 2/\sqrt{6} \\ 1/\sqrt{3} & 1/\sqrt{2} & -1/\sqrt{6} \end{bmatrix}$$

and $P^{T}AP = \begin{bmatrix} 8 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$ is a diagonal matrix.

Theorem 17 Let $\mathbf{x}^T A \mathbf{x}$ be a quadratic form in variables x_1, \ldots, x_n . Let P be an orthogonal matrix that orthogonally diagonalizes A. If $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A and y_1, \ldots, y_n are new variables such that $\mathbf{x} = P \mathbf{y}$, then

$$\mathbf{x}^{T}A\mathbf{x} = \mathbf{y}^{T}(P^{T}AP)\mathbf{y} = \boldsymbol{\lambda}_{1}y_{1}^{2} + \dots + \lambda_{n}y_{n}^{2}$$

and

$$P^T A P = \begin{bmatrix} \boldsymbol{\lambda}_1 & 0 & \cdots & 0 \\ 0 & \boldsymbol{\lambda}_2 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & 0 & \cdots & \boldsymbol{\lambda}_n \end{bmatrix}.$$

Example 18 Let $A = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4 \end{bmatrix}$. By the calculations in Example 16, $2x_1^2 + 4x_2^2 + 4x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3 = \mathbf{x}^T A \mathbf{x} = \mathbf{y}^T \left(P^T A P \right) \mathbf{y} = 8y_1^2 + 2y_2^2 + 2y_3^2$.

Question #4: If $\mathbf{x}^T A \mathbf{x}$ is a quadratic form in two or three variables and c is a constant, what does the graph of the level set $\mathbf{x}^T A \mathbf{x} = c$ look like?

Theorem 19 If $\mathbf{x}^T A \mathbf{x}$ is a quadratic form in two variables and c is a constant, the level curve given by $\mathbf{x}^T A \mathbf{x} = c$ is a conic. If $\mathbf{x}^T A \mathbf{x}$ is a quadratic form in three variables and c is a constant, the level surface given by $\mathbf{x}^T A \mathbf{x} = c$ is a quadratic.

Example 20 In Example 4, let
$$P = \begin{bmatrix} 1/\sqrt{2} & -1/\sqrt{2} \\ 1/\sqrt{2} & 1/\sqrt{2} \end{bmatrix}$$
; then $P^T A P = \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$. The level curve given by $2x_1x_2 = 1$ is the hyperbola $y_1^2 - y_2^2 = 1$ since
 $2x_1x_2 = \mathbf{x}^T A \mathbf{x} = \mathbf{y}^T \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix} \mathbf{y} = y_1^2 - y_2^2.$

From Example 18 we observe that the level surface $2x_1^2 + 4x_2^2 + 4x_3^2 + 4x_1x_2 + 4x_1x_3 + 4x_2x_3 = 1$ is the ellipsoid $8y_1^2 + 2y_2^2 + 2y_3^2 = 1$.

Exercise 21 Since the quadratic form in Example 11 is positive definite, the quadric given by $\mathbf{x}^T A \mathbf{x} = 1$ is an ellipsoid. Eliminate the cross-terms by performing an orthogonal change of variables. Express this ellipsoid in the standard form $\frac{y_1^2}{a^2} + \frac{y_2^2}{c^2} = 1$.

Definition 22 A quadratic form $\mathbf{x}^T A \mathbf{x}$ is non-degenerate if all eigenvalues of A are non-zero.

Definition 23 The signature of a non-degenerate quadratic form $\mathbf{x}^T A \mathbf{x}$, denoted by sig(A), is the number of negative eigenvalues of A.

Theorem 24 Let $\mathbf{x}^T A \mathbf{x}$ be a non-degenerate quadratic form in two variables.

- 1. If sig (A) = 0, then $\mathbf{x}^T A \mathbf{x} = 1$ is an ellipse.
- 2. If sig (A) = 1, then $\mathbf{x}^T A \mathbf{x} = 1$ is an hyperbola.

Theorem 25 Let $\mathbf{x}^T A \mathbf{x}$ be a non-degenerate quadratic form in three variables.

- 1. If sig (A) = 0, then $\mathbf{x}^T A \mathbf{x} = 1$ is an ellipsoid.
- 2. If sig (A) = 1, then $\mathbf{x}^T A \mathbf{x} = 1$ is an hyperboloid of one sheet.
- 3. If sig (A) = 2, then $\mathbf{x}^T A \mathbf{x} = 1$ is an hyperboloid of two sheets.

11-17-08