Quadratic Forms

Math 422

Definition 1 A quadratic form is a function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ of form

$$
f(\mathbf{x})=\mathbf{x}^{T} A \mathbf{x}
$$

where A is an $n \times n$ symmetric matrix.
Example $2 f(x, y)=2 x^{2}+3 x y-4 y^{2}=\left[\begin{array}{ll}x & y\end{array}\right]\left[\begin{array}{cc}2 & \frac{3}{2} \\ \frac{3}{2} & -4\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]$.
Note that the Euclidean inner product (dot product) of two (column) vectors \mathbf{a} and \mathbf{b} can be expressed in terms of matrix multiplication as

$$
\langle\mathbf{a}, \mathbf{b}\rangle=\mathbf{b}^{T} \mathbf{a}
$$

Thus, a quadratic form can be expressed in terms of the Euclidean inner product as

$$
\mathbf{x}^{T} A \mathbf{x}=\langle A \mathbf{x}, \mathbf{x}\rangle=\langle\mathbf{x}, A \mathbf{x}\rangle
$$

Let S^{n-1} denote the unit $(n-1)$-dimensional sphere in \mathbb{R}^{n}, i.e., relative to the Euclidean inner product

$$
S^{n-1}=\left\{\mathbf{x} \in \mathbb{R}^{n}:\langle\mathbf{x}, \mathbf{x}\rangle=1\right\}
$$

Since S^{n-1} is a closed and bounded subset of \mathbb{R}^{n}, continuous functions on S^{n-1} attain their maximum and minimum values.

Question \#1: For $\mathbf{x} \in S^{n-1}$, what are the maximum and minimum values of a quadratic form $\mathbf{x}^{T} A \mathbf{x}$?

Theorem 3 Let A be a symmetric $n \times n$ matrix with eigenvalues $\lambda_{1} \geq \lambda_{2} \geq \cdots \geq \lambda_{n}$. Then

1. $\lambda_{1} \geq \mathbf{x}^{T} A \mathbf{x} \geq \lambda_{n}$ for all $\mathbf{x} \in S^{n-1}$.
2. If $\mathbf{x}_{1} \in S^{n-1}$ is an eigenvalue associated with λ_{1}, then $\lambda_{1}=\mathbf{x}_{1}^{T} A \mathbf{x}_{1}$.
3. If $\mathbf{x}_{n} \in S^{n-1}$ is an eigenvalue associated with λ_{n}, then $\lambda_{n}=\mathbf{x}_{n}^{T} A \mathbf{x}_{n}$.

The maximum and minimum of a quadratic form $\mathbf{x}^{T} A \mathbf{x}$ can be found by computing the largest and smallest eigenvalue of A. The maximum (respectively, minimum) will always be attained at diametrically opposite points on the unit sphere $\pm \frac{\mathbf{x}}{\|\mathbf{x}\|}$, where \mathbf{x} is any eigenvector associated with λ_{1} (respectively, λ_{n}).

Example 4 Consider $f\left(x_{1}, x_{2}\right)=2 x_{1} x_{2}=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]$. Since the eigenvalues of $A=$ $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$ are $\lambda_{1}=1$ and $\lambda_{2}=-1$, the maximum and minimum values of f on the unit circle S^{1} are 1 and -1 , respectively. Furthermore, the maximum value is attained at the eigenvectors on S^{1} associated with $\lambda_{1}=1$, namely $\pm\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$; the minimum value is attained at the eigenvectors on S^{1} associated with $\lambda_{2}=-1$, namely $\pm\left[\begin{array}{c}-1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$.

Question \#2: Under what conditions is the quadratic form $\mathbf{x}^{T} A \mathbf{x}>0$ for all $\mathbf{x} \neq \mathbf{0}$?

Definition $5 \mathbf{x}^{T} A \mathbf{x}$ is positive definite iff $\mathbf{x}^{T} A \mathbf{x}>0$ for all $\mathbf{x} \neq \mathbf{0}$ and $\mathbf{x}^{T} A \mathbf{x}=0$ iff $\mathbf{x}=\mathbf{0}$. A symmetric matrix is positive definite iff $\mathbf{x}^{T} A \mathbf{x}$ is positive definite.

Example 6 The Euclidean inner product is a positive definite quadratic form since

$$
x_{1}^{2}+\cdots+x_{n}^{2}=\langle\mathbf{x}, \mathbf{x}\rangle=\mathbf{x}^{T} \mathbf{x}=\mathbf{x}^{T} I \mathbf{x}
$$

Theorem 7 A symmetric matrix A is positive definite iff all eigenvalues of A are positive.
Example 8 The matrix $A=\left[\begin{array}{lll}4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4\end{array}\right]$ is positive definite since the eigenvalues of A are $\lambda_{1}=8, \lambda_{2}=2$ and $\lambda_{3}=2$. Note that if $\mathbf{x} \neq \mathbf{0}$, then $\mathbf{x}^{T} A \mathbf{x}=2 x_{1}^{2}+4 x_{2}^{2}+4 x_{3}^{2}+4 x_{1} x_{2}+4 x_{1} x_{3}+4 x_{2} x_{3}>0$.

Definition 9 For $1 \leq k \leq n$, the $k^{\text {th }}$ principal submatrix of an $n \times n$ matrix $A=\left[a_{i j}\right]$ is

$$
\left[\begin{array}{ccc}
a_{11} & \cdots & a_{1 k} \\
\vdots & & \vdots \\
a_{k 1} & \cdots & a_{k k}
\end{array}\right]
$$

Theorem 10 A symmetric matrix A is positive definite iff every principal subdeterminant of A is positive.
Example 11 The principal subdeterminants of the matrix $A=\left[\begin{array}{ccc}2 & -1 & -3 \\ -1 & 2 & 4 \\ -3 & 4 & 9\end{array}\right]$ are $\operatorname{det}[2]=2$, $\operatorname{det}\left[\begin{array}{cc}2 & -1 \\ -1 & 2\end{array}\right]=$ 3 and $\operatorname{det} A=1$. Since all are positive, the quadratic form $\mathbf{x}^{T} A \mathbf{x}$ is positive definite.

Question \#3: If $\mathbf{x}^{T} A \mathbf{x}$ is a quadratic form with non-diagonal A, under what conditions does there exist an orthogonal change variables so that $(P \mathbf{y})^{T} A(P \mathbf{y})=\mathbf{y}^{T}\left(P^{T} A P\right) \mathbf{y}$ has no cross-terms?

Definition 12 An $n \times n$ matrix A is orthogonally diagonalizable iff there exists an orthogonal matrix P such that $P^{T} A P$ is a diagonal matrix.

Theorem 13 If A is an $n \times n$ matrix, then the following are equivalent:

1. A is orthogonally diagonalizable.
2. A has an orthonormal set of n eigenvectors.
3. A is symmetric.

Theorem 14 If A is symmetric, then

1. The eigenvalues of A are real numbers.
2. Eigenvectors from different eigenspaces are orthogonal with respect to the Euclidean inner product.

Use the following procedure to orthogonally diagonalize A :
Example 15 1. Find a basis for each eigenspace of A.
2. Apply Gram-Schmidt and obtain an orthonormal basis for each eigenspace.
3. Form the matrix P whose columns are the basis vectors constructed in step 2.

Example 16 Consider the matrix $A=\left[\begin{array}{lll}4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4\end{array}\right]$ whose eigenvalues are $\lambda_{1}=8, \lambda_{2}=2$ and $\lambda_{3}=2$.
Canonical bases for the eigenspaces are $\left\{\mathbf{x}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]\right\}$ $\leftrightarrow 8$ and $\left\{\mathbf{x}_{2}=\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right], \mathbf{x}_{3}=\left[\begin{array}{c}-1 \\ 1 \\ 0\end{array}\right]\right\} \leftrightarrow 2$. Note that $\left\langle\mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle=\left\langle\mathbf{x}_{1}, \mathbf{x}_{3}\right\rangle=0$. Applying Gram-Schmidt gives

$$
\left\{\mathbf{v}_{1}=\frac{\mathbf{x}_{1}}{\left\|\mathbf{x}_{1}\right\|}=\left[\begin{array}{l}
1 / \sqrt{3} \\
1 / \sqrt{3} \\
1 / \sqrt{3}
\end{array}\right]\right\} \quad \text { and }
$$

$$
\left\{\mathbf{v}_{2}=\frac{\mathbf{x}_{2}}{\left\|\mathbf{x}_{2}\right\|}=\left[\begin{array}{c}
-1 / \sqrt{2} \\
0 \\
1 / \sqrt{2}
\end{array}\right], \mathbf{v}_{3}=\frac{\mathbf{x}_{3}-\left\langle\mathbf{x}_{3}, \mathbf{v}_{2}\right\rangle \mathbf{v}_{2}}{\left\|\mathbf{x}_{3}-\left\langle\mathbf{x}_{3}, \mathbf{v}_{2}\right\rangle \mathbf{v}_{2}\right\|}=\left[\begin{array}{c}
-1 / \sqrt{6} \\
2 / \sqrt{6} \\
-1 / \sqrt{6}
\end{array}\right]\right\} \text {. The matrix } P=\left[\begin{array}{ccc}
1 / \sqrt{3} & -1 / \sqrt{2} & -1 / \sqrt{6} \\
1 / \sqrt{3} & 0 & 2 / \sqrt{6} \\
1 / \sqrt{3} & 1 / \sqrt{2} & -1 / \sqrt{6}
\end{array}\right]
$$

$$
\text { and } P^{T} A P=\left[\begin{array}{lll}
8 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right] \text { is a diagonal matrix. }
$$

Theorem 17 Let $\mathbf{x}^{T} A \mathbf{x}$ be a quadratic form in variables x_{1}, \ldots, x_{n}. Let P be an orthogonal matrix that orthogonally diagonalizes A. If $\boldsymbol{\lambda}_{1}, \ldots, \lambda_{n}$ are the eigenvalues of A and y_{1}, \ldots, y_{n} are new variables such that $\mathrm{x}=P \mathbf{y}$, then

$$
\mathbf{x}^{T} A \mathbf{x}=\mathbf{y}^{T}\left(P^{T} A P\right) \mathbf{y}=\boldsymbol{\lambda}_{1} y_{1}^{2}+\cdots+\lambda_{n} y_{n}^{2}
$$

and

$$
P^{T} A P=\left[\begin{array}{cccc}
\boldsymbol{\lambda}_{1} & 0 & \cdots & 0 \\
0 & \boldsymbol{\lambda}_{2} & & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]
$$

Example 18 Let $A=\left[\begin{array}{lll}4 & 2 & 2 \\ 2 & 4 & 2 \\ 2 & 2 & 4\end{array}\right]$. By the calculations in Example 16, $2 x_{1}^{2}+4 x_{2}^{2}+4 x_{3}^{2}+4 x_{1} x_{2}+4 x_{1} x_{3}+$ $4 x_{2} x_{3}=\mathbf{x}^{T} A \mathbf{x}=\mathbf{y}^{T}\left(P^{T} A P\right) \mathbf{y}=8 y_{1}^{2}+2 y_{2}^{2}+2 y_{3}^{2}$.

Question \#4: If $\mathbf{x}^{T} A \mathbf{x}$ is a quadratic form in two or three variables and c is a constant, what does the graph of the level set $\mathbf{x}^{T} A \mathbf{x}=c$ look like?

Theorem 19 If $\mathbf{x}^{T} A \mathbf{x}$ is a quadratic form in two variables and c is a constant, the level curve given by $\mathbf{x}^{T} A \mathbf{x}=c$ is a conic. If $\mathbf{x}^{T} A \mathbf{x}$ is a quadratic form in three variables and c is a constant, the level surface given by $\mathbf{x}^{T} A \mathbf{x}=c$ is a quadric.

Example 20 In Example 4, let $P=\left[\begin{array}{cc}1 / \sqrt{2} & -1 / \sqrt{2} \\ 1 / \sqrt{2} & 1 / \sqrt{2}\end{array}\right] ;$ then $P^{T} A P=$ $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$. The level curve given by $2 x_{1} x_{2}=1$ is the hyperbola $y_{1}^{2}-y_{2}^{2}=1$ since

$$
2 x_{1} x_{2}=\mathbf{x}^{T} A \mathbf{x}=\mathbf{y}^{T}\left[\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right] \mathbf{y}=y_{1}^{2}-y_{2}^{2}
$$

From Example 18 we observe that the level surface $2 x_{1}^{2}+4 x_{2}^{2}+4 x_{3}^{2}+4 x_{1} x_{2}+4 x_{1} x_{3}+4 x_{2} x_{3}=1$ is the ellipsoid $8 y_{1}^{2}+2 y_{2}^{2}+2 y_{3}^{2}=1$.

Exercise 21 Since the quadratic form in Example 11 is positive definite, the quadric given by $\mathbf{x}^{T} A \mathbf{x}=1$ is an ellipsoid. Eliminate the cross-terms by performing an orthogonal change of variables. Express this ellipsoid in the standard form $\frac{y_{1}^{2}}{a^{2}}+\frac{y_{2}^{2}}{b^{2}}+\frac{y_{3}^{2}}{c^{2}}=1$.

Definition 22 A quadratic form $\mathbf{x}^{T} A \mathbf{x}$ is non-degenerate if all eigenvalues of A are non-zero.
Definition 23 The signature of a non-degenerate quadratic form $\mathbf{x}^{T} A \mathbf{x}$, denoted by $\operatorname{sig}(A)$, is the number of negative eigenvalues of A.

Theorem 24 Let $\mathbf{x}^{T} A \mathbf{x}$ be a non-degenerate quadratic form in two variables.

1. If $\operatorname{sig}(A)=0$, then $\mathbf{x}^{T} A \mathbf{x}=1$ is an ellipse.
2. If $\operatorname{sig}(A)=1$, then $\mathbf{x}^{T} A \mathbf{x}=1$ is an hyperbola.

Theorem 25 Let $\mathbf{x}^{T} A \mathbf{x}$ be a non-degenerate quadratic form in three variables.

1. If $\operatorname{sig}(A)=0$, then $\mathbf{x}^{T} A \mathbf{x}=1$ is an ellipsoid.
2. If $\operatorname{sig}(A)=1$, then $\mathbf{x}^{T} A \mathbf{x}=1$ is an hyperboloid of one sheet.
3. If $\operatorname{sig}(A)=2$, then $\mathbf{x}^{T} A \mathbf{x}=1$ is an hyperboloid of two sheets.
