
The Linear Algebra of Space-Time:
Computing Length Contraction and Time Dilation Near the Speed of Light

Math 422

Minkowski Space

For simplicity, we consider 2-dimensional space-time, or Minkowski space, which is the pseudo inner
product space

R21 = f(t; x) : t; x 2 Rg
with pseudo inner product de�ned by

h(t1; x1) ; (t2; x2)i = t1t2 � x1x2:

The Minkowski norm
k(t; x)k =

p
t2 � x2

ranges over all non-negative real and positive imaginary values.
Curves of constant Minkowski norm a satisfy the equation

t2 � x2 = a2: (1)

The parameter a determines three families of such curves:

� When a = 0; (1) de�nes the light cone x = �t:

� When a 2 R+, (1) de�nes a real hyperbolic circle of radius a; which is the hyperbola t2 � x2 = a2

inside the light cone.

� When a = ib 2 iR+, (1) de�nes an imaginary hyperbolic circle of radius ib; which is the hyperbola
x2 � t2 = b2 outside the light cone.

� Isotropic vectors have zero Minkowski norm and live on the light-cone.

� Time-like vectors have positive real Minkowski norm and live inside the light-cone.

� Space-like vectors have positive imaginary Minkowski norm and live outside the light-cone.

Let C : (t (u) ; x (u)) ; a � u � b; be a parametrized curve in R21 and de�ne the hyperbolic arc length s of
C to be

s =

Z b

a

k(t0 (u) ; x0 (u))k du =
Z b

a

q
(t0)

2 � (x0)2du:

Hyperbolic Circles

Recall that Euclidean angle � measures the arc length along the unit circle in R2 from (1; 0) to (cos �; sin �).
Note that the area of the sector subtending the arc from (cos �;� sin �) to (cos �; sin �) is also �: On the other
hand, the arc length from (1; 0) to (cosh �; sinh �) along the real hyperbolic circle t2 � x2 = 1 is �i; but
we�d like it to be �. Thankfully, the area of the real hyperbolic sector subtending the hyperbolic arc from
(cosh �;� sinh �) to (cosh �; sinh �) is exactly �: So let�s rede�ne Euclidean angle � to be the area of the
sector subtending the arc from (cos �;� sin �) to (cos �; sin �) ; then analogously, de�ne the hyperbolic angle
� to be the area of the real hyperbolic sector subtending the real hyperbolic arc from (cosh �;� sinh �) to
(cosh �; sinh �). Note that (cos �; sin �) and (� cos �;� sin �) are antipodes on the unit circle, and likewise
(cosh �; sinh �) and (� cosh �;� sinh �) are antipodes on the real hyperbolic circle t2 � x2 = 1.
Parametrize the imaginary hyperbolic circle C : x2 � t2 = b2 by t = b sinh �; x = b cosh �: Then the arc

length function along C is

s (�) =

Z �

0

k(b coshu; b sinhu)k du =
p
b2
Z �

0

du = b�

1



so that � = s=b: Now substituting for � in terms of s reparametrizes C by arc length and gives the position
function

r (s) = b
�
sinh

�s
b

�
; cosh

�s
b

��
with velocity

v (s) =
�
cosh

�s
b

�
; sinh

�s
b

��
and constant speed

kv (s)k =
r
cosh2

�s
b

�
� sinh2

�s
b

�
= 1:

Thus the unit tangent vector �eld T (s) along C is simply the velocity vector �eld v (s) along C; and the
curvature � of C is the magnitude of T0 (s), i.e., the instantaneous rate at which T changes direction. Thus

T0 (s) = v0 (s) =
1

b

�
sinh

�s
b

�
; cosh

�s
b

��
and the curvature

� = kT0 (s)k = 1

b

r
sinh2

�s
b

�
� cosh2

�s
b

�
=
i

b
= � 1

bi

is the negative reciprocal of the imaginary radius. Note that unlike Euclidean circular motion, in which the
acceleration and position have opposite directions, the acceleration and position of imaginary hyperbolic
circular motion have the same direction:

b (s) = v0 (s) =
1

b2
r (s) :

Nevertheless, hyperbolic and Euclidean circles have similar properties.

Exercises

1. Show that the length of the arc along the real hyperbolic unit circle from (1; 0) to (cosh �; sinh �) is �i:

2. Show that the area of the real hyperbolic unit sector with angle 2�; i.e., the plane region bounded
by the lines x = �t tanh � and t2 � x2 = 1; is exactly �: (Your integration will require a hyperbolic
trigonometric substitution.)

3. Given a > 0; parametrize the real hyperbolic circle C : t2 � x2 = a2 by t = a cosh �; x = a sinh �:
Reparametrize by arc length and show that the curvature � = 1

a and that acceleration and position
have opposite directions.

The Poincaré Group

Recall that an isometry (�xing the origin) is a norm preserving linear transformation. Plane Euclidean
isometries are rotations �� about the origin through angle � and re�ections �� in lines through the origin
with inclination �. Euclidean rotations �x circles centered at the origin and send lines through the origin
to lines through the origin; re�ections �x their re�ecting lines point-wise. Rotations �� are represented by
orthogonal matrices with determinant +1 :

[��] =

�
cos � � sin �
sin � cos �

�
:

Re�ections �� are represented by orthogonal matrices with determinant �1:

[��] =

�
cos 2� � sin 2�

� sin 2� � cos 2�

�
;

and in particular,

[�0] =

�
1 0
0 �1

�
:
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Euclidean isometries are represented by elements of the orthogonal group O (2), which is the union of two
disjoint components

[��] =

�
cos � � sin �
sin � cos �

�
and [��] [�0] =

�
cos � sin �
sin � � cos �

�
:

The component �
cos � � sin �
sin � cos �

�
= cos �

�
1 0
0 1

�
+ sin �

�
0 �1
1 0

�
parametrizes the circle

C1 : u
2
1 + u

2
2 = 2

in the 2-plane spanned by

B1 =
(
u1 =

"
1p
2

0

0 1p
2

#
; u2 =

"
0 � 1p

2
1p
2

0

#)
:

Note that the trivial rotation

[�0] =

�
1 0
0 1

�
=
p
2u1 + 0u2

is the point
�p
2; 0
�
on this circle in the basis B1. Similarly, the component�

cos � sin �
sin � � cos �

�
= cos �

�
1 0
0 �1

�
+ sin �

�
0 1
1 0

�
parametrize the circle

C2 : u
2
3 + u

2
4 = 2

in the 2-plane spanned by

B2 =
(
u3 =

"
1p
2

0

0 � 1p
2

#
; u4 =

"
0 1p

2
1p
2

0

#)
:

Since B1 [ B2 is linearly independent in R2�2, C1 \ C2 = ? and C1 [ C2 = O (2) :
The situation in Minkowski space is similar but a bit more complicated. Here the isometries are hyperbolic

rotations and hyperbolic re�ections. The group of all such transformations, called the Poincaré group O (1; 1),
has four connected components, which appear as the branches of two hyperbolas in R2�2. A hyperbolic
rotation R� through angle � is represented by the matrix

[R�] =

�
cosh � sinh �
sinh � cosh �

�
and is given in coordinates by

R� (t; x) = (t cosh � + x sinh �; t sinh � + x cosh �) :

Note that R� �xes hyperbolic circles: If (�t; �x) = R� (t; x) ; then

(�t)
2 � (�x)2 = (t cosh � + x sinh �)2 � (t sinh � + x cosh �)2 = t2 � x2:

Furthermore, R� sends lines through the origin to lines through the origin since

R� (a; 0) = a (cosh �; sinh �) :

Denote re�ection in the t-axis by
S0 (t; x) = (t;�x)

and re�ection in the x-axis by
S1 (t; x) = (�t; x) :
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Then S0 and S1 �x hyperbolic circles since

t2 � x2 = t2 � (�x)2 = (�t)2 � x2:

Let l� be a line through the origin with inclination � 6= ��=4; and let R� be the hyperbolic rotation that
rotates l� onto the t-axis if ��=4 < � < �=4; and rotates l� onto the x-axis if �=4 < � < 3�=4. The hyperbolic
re�ection in line l is the composition

Sm =

�
R�1� S0R�; if � �=4 < � < �=4
R�1� S1R�; if �=4 < � < 3�=4:

Hyperbolic re�ections �x hyperbolic circles and �x their re�ecting lines point-wise. Somewhat surprisingly
perhaps, there are no hyperbolic re�ections in the lines x = �t (see Exercise 7 below). The re�ections S0
and S1 are represented by the matrices

[S0] =

�
1 0
0 �1

�
and [S1] =

�
�1 0
0 1

�
:

Minkowski isometries are represented by elements of the Poincaré group O (1; 1) ; which is the union of
four mutually disjoint components:

[R�] =

�
cosh � sinh �
sinh � cosh �

�
; [R�] [S0] [S1] =

�
� cosh � � sinh �
� sinh � � cosh �

�
;

[R�] [S0] =

�
cosh � � sinh �
sinh � � cosh �

�
; [R�] [S1] =

�
� cosh � sinh �
� sinh � cosh �

�
:

The components �
cosh � sinh �
sinh � cosh �

�
= cosh �

�
1 0
0 1

�
+ sinh �

�
0 1
1 0

�
and �

� cosh � � sinh �
� sinh � � cosh �

�
= � cosh �

�
1 0
0 1

�
� sinh �

�
0 1
1 0

�
form the two branches of the hyperbola

H1 : u
2
1 � u24 = 2

in the 2-plane spanned by

B01 =
(
u1 =

"
1p
2

0

0 1p
2

#
; u4 =

"
0 1p

2
1p
2

0

#)
:

The trivial hyperbolic rotation

[R0] =

�
1 0
0 1

�
=
p
2u1 + 0u4

is the point
�p
2; 0
�
on this hyperbola in the basis B1. The components�

cosh � � sinh �
sinh � � cosh �

�
= cosh �

�
1 0
0 �1

�
+ sinh �

�
0 �1
1 0

�
and �

� cosh � sinh �
� sinh � cosh �

�
= � cosh �

�
1 0
0 �1

�
� sinh �

�
0 �1
1 0

�
form the two branches of the hyperbola

H2 : u
2
3 � u22 = 2

in the 2-plane spanned by

B02 =
(
u3 =

"
1p
2

0

0 � 1p
2

#
; u2 =

"
0 � 1p

2
1p
2

0

#)
:

Since B01 [ B02 is linearly independent in R2�2, H1 \H2 = ? and H1 [H2 = O (1; 1) :
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Exercises

4. Find the matrices
�
R�1�

�
;
�
R�1� S0R�

�
; and

�
R�1� S1R�

�
:

5. Prove that a hyperbolic re�ection �xes its re�ecting line point-wise.

6. Prove that S0 and S1 are the only hyperbolic re�ections that are also Euclidean re�ections.

7. Prove that a Minkowski norm preserving linear transformation that �xes the line x = t point-wise is
the identity transformation. Prove the analogous statement for the line x = �t.

Special Relativity

The speed of light c � 3� 108 m/sec.

� An event is a point (t; x) in space-time.

� The world-line of a particle P is a parametrized curve r (t) = (ct; x (t)) :

� The relative velocity of P along its world line is v (t)= (c; x0 (t)) :

� The ordinary velocity of P is x0 (t) :

� The relative speed of P along its world line is kvk =
q
c2 � (x0)2:

� The ordinary speed of P is jx0j :

Physical Assumption 1: The ordinary speed of a particle cannot exceed the speed of light.

Hence (x0)2 � c2 and
kvk2 = c2 � (x0)2 � 0:

Thus vectors tangent to the world-line of a particle in motion are either time-like or isotropic.

Physical Assumption 2: A particle traveling at the speed of light has zero mass.

� The world-line of a particle at rest is a horizontal line inside the light cone.

� The world-line of a particle with non-zero mass is a curve inside the light cone.

� The world-line of a particle with non-zero mass and constant speed is a line inside the light cone.

� The world-line of a photon is a line on the light cone.

Consider the world-line r (t) = (ct; x (t)) of a particle P with non-zero mass and constant ordinary velocity
v in the positive x-direction. The relative velocity of P is (c; v) and its relative speed is

p
c2 � v2: The arc

length function s for the world-line of P is

s (t) =

Z t

0

k(c; v)k du =
p
c2 � v2

Z t

0

du = t
p
c2 � v2; (2)

hence

t =
sp

c2 � v2
=

s=cp
1� v2=c2

:

The proper elapsed time of P is the quantity

s

c
= t
p
1� v2=c2:
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If P is at rest, for example, its proper elapsed time is t:

Lorentz Transformations

�Lorentz transformations� are special elements of the Poincaré group that change coordinates from
reference frame �K (c�t; �x) to reference frame K (ct; x) or vice versa as �K moves along a straight line with
constant velocity relative to K.

Physical Assumption 3: The speed of light c is the same in every frame of reference.

Assume that �K moves in the positive x direction in K with constant speed v: A Lorentz transformation is
a hyperbolic change of coordinates �

ct
x

�
=

�
� �

 �

� �
c�t
�x

�
: (3)

Note that

A =

�
� �

 �

�
lies in the component of I 2 O (1; 1) since A! I as v ! 0: Hence A is a hyperbolic rotation

R� =

�
cosh � sinh �
sinh � cosh �

�
and equation (3) becomes �

ct
x

�
=

�
cosh � sinh �
sinh � cosh �

� �
c�t
�x

�
(4)

Example. Let � = ln 2; then cosh � = 5
4 and sinh � =

3
4 : Thus�

5
3

�
=

�
5=4 3=4
3=4 5=4

� �
4
0

�
and

�
0
4

�
=

�
5=4 3=4
3=4 5=4

� �
�3
5

�
:

This particular hyperbolic rotation moves the point (4; 0) �counterclockwise�along the hyperbola t2�x2 = 16
to the point (5; 3) ; and the point (�3; 5) �clockwise�along the hyperbola x2 � t2 = 16 to the point (0; 4) :
The �ows along these two hyperbolas asymptotically approach the light cone x = t in the second quadrant
(see Figure 1).

Figure 1. Hyperbolic rotations �x hyperbolas.

Lorentz transformations change coordinates of

� time-like vectors (inside the light cone) from �K-coordinates to K-coordinates and

� space-like vectors (outside the light cone) from K-coordinates to �K-coordinates.

Let�s investigate the motion of a particle P with non-zero mass positioned at the origin �O in the moving
frame �K as it moves in the positive x-direction in frame K with constant speed v: Since P is at rest in frame
�K; its world line in �K is the parametrized curve (c�t; 0) contained in the �t axis. But when viewed from frame
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K; its world line has positive slope inside the light cone and is parameterized by (ct; x) = (c�t cosh �; c�t sinh �)
via equation (4). Now dividing second components by �rst components gives

tanh � =
x

ct
=
vt

ct
=
v

c
: (5)

Now using the fact that cosh � > 0; solve for cosh � in the identity

1 = cosh2 � � sinh2 � = cosh2 �
�
1� tanh2 �

�
and obtain

cosh � =
1p

1� tanh2 �
=

1p
1� v2=c2

:

Combining this with equation (5) gives

sinh � =
v=cp

1� v2=c2
;

and substituting in (4) we obtain

t =
1p

1� v2=c2
�
�t+

�
v=c2

�
�x
�

x =
1p

1� v2=c2
(v�t+ �x) :

In matrix form this is �
t
x

�
=

1p
1� v2=c2

�
1 v=c2

v 1

� �
�t
�x

�
: (6)

Physical Implications:

Suppose that velocity v << c; i.e., v is small relative to the speed of light. Then v=c is negligible and
the Lorentz transformations in (6) reduce to�

t
x

�
=

�
1 0
v 1

� �
�t
�x

�
or equivalently

t = �t and x = v�t+ �x:

These are the Galilean transformations of classical physics in which relativistic e¤ects are not apparent. How-
ever, when relative speeds v are near c, the Lorentz transformations produce some surprising and dramatic
relativistic e¤ects.

Length Contraction:

A spaceship �ying through space along a line with constant speed v �ies by the international space
station. At instant �t in the moving frame �K (c�t; �x) of the spaceship, the ship�s captain observes that the
endpoints of the space station are positioned at �x1 and �x2 on the �x-axis; thus its ordinary length measured
by the ship�s captain is ��x = �x2 � �x1: Thinking of these measurements as events, their �K-coordinates are
(�t; �x1) and (�t; �x2) ; and we can use equation (6) to change coordinates and calculate the ordinary length
�x = x2 � x1 in the �xed reference frame K (ct; x) of the space station. According to (6), the relationship
between the lengths ��x and �x at instant �t is

�x = x2 � x1 =
v�t+ �x2p
1� v2=c2

� v�t+ �x1p
1� v2=c2

=
1p

1� v2=c2
��x;

or equivalently,
��x =

p
1� v2=c2�x:
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Since
p
1� v2=c2 < 1; ordinary length in frame K appears to contract when viewed from from �K. For

example, if v = :73c; then p
1� :732 �

p
:47 � :69;

if �x =
p
34 � 5:83; then

��x � (:69) (5:83) � 4:

So the ordinary length of the space station measured by the spaceship captain appears to be about 31% less
than the ordinary length measured by the space station manager.

Figure 2. Length contracts as imaginary hyperbolic rotation angle increases.

In summary, to an observer in a reference frame moving along a straight line with constant speed v
relative to a �xed reference frame, the ordinary length of an object at rest in the �xed frame appears to be
shorter than it does to an observer in the �xed frame by a factor of

p
1� v2=c2. And indeed, ��x ! 0 as

v ! c: This phenomenon is called the Lorentz length contraction.

Time Dilation:

Now suppose a clock on board the spaceship is positioned at the origin �O in the moving frame �K of the
spaceship. As the spaceship passes the space station, the captain takes two clock readings �t1 and �t2 and
determines the elapsed time to be ��t = �t2��t1: Thinking of these two readings as events, their �K-coordinates
are (�t1; 0) and (�t2; 0), and the relationship between the elapsed time ��t measured in the moving frame and
the elapsed time �t in the �xed frame given by (6) is

�t =
�t2p

1� v2=c2
�

�t1p
1� v2=c2

=
1p

1� v2=c2
��t:

Since 1p
1�v2=c2

> 1; elapsed time in frame �K appears to dilate when viewed from K. For example, if

v = :73c; then
1p

1� :732
� 1p

:47
� 1:46;

if ��t = 4; then
�t � (1:46) (4) = 5:84:

So as far as the space station manager can tell, space station clocks appear to run about 46% faster than
clocks on board the passing spaceship.
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Figure 3. Time dilates as real hyperbolic angle increases.

In summary, to an observer in a �xed reference frame, the elapsed time measured in a reference frame
moving along a straight line with constant speed v appears to dilate by a factor of 1=

p
1� v2=c2. And

indeed, �t!1 as v ! c: This phenomenon is called the Lorentz time dilation.

Moral: Live fast; live long (relatively speaking...)!

Exercises

8. Consider a particle P positioned at the origin �O in a frame �K moving relative to a �xed frame K in
the positive x-direction. Prove that the world line of P in K lies inside the light cone.

9. Compute the factors of length contraction and time dilation when v = :9c and v = :99c:
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