
The Angle Sum of a Triangle
Math 353

In a nutshell, this course is about the angle sum of a triangle. The fundamental result in this course
is that the angle sum of a triangle depends on the choice of Parallel Postulate and, given such a choice, is
always less than, equal to, or greater than 180◦.
On the other hand, if we only assume Euclid’s first four postulates, along with the axioms of incidence,

congruence, continuity and betweenness, the angle sum of a triangle is always less than or equal to 180◦. This
geometry is called neutral (or absolute) geometry. (For a complete list of incidence, congruence, continuity
and betweenness axioms, see the text by Marvin Greenberg, “Euclidean and Non-Euclidean Geometries:
Development and History,” 3rd Ed., W.H. Freeman and Co., New York, 1993.)
These notes begin with results from neutral geometry and follow with results from Euclidean and non-

Euclidean geometries. Many of the proofs follow those in Greenberg’s text, and some are my own. The
material has been organized so that results on angle sums are obtained as efficiently as possible. Let us
begin.

The Angle Sum of a Triangle in Neutral Geometry.

In this section we will prove the Saccheri-Legendre Theorem: In neutral geometry, the angle sum of a
triangle is less than or equal to 180◦. We will also consider some important consequences of this theorem.
Throughout this and the next two sections we assume Euclid’s first four postulates and the axioms of
incidence, congruence, continuity and betweenness.

Theorem 1 (Exterior Angle Inequality) The measure of an exterior angle of a triangle is greater than the
measure of either remote interior angle.

Proof. Given 4ABC, extend side BC to ray
−−→
BC and choose a point D on this ray so that B −C −D.

I claim that m∠ACD > m∠A and m∠ACD > m∠B. Let M be the midpoint of AC and extend the median
BM so that M is the midpoint of BE.
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Figure 1.

Then ∠AMB and ∠CME are congruent vertical angles and 4AMB ∼= 4CME by SAS. Consequently,
m∠ACE = m∠CAB by CPCTC. Now, E lies in the half-plane of A and

←→
CD since A and E are on the

same side of
←→
CD. Also, E lies in the half-plane of D and

←→
AC since D and E are on the same side of←→

AC. Therefore E lies in the interior of ∠ACD, which is the intersection of these two half-planes. Finally,
m∠ACD = m∠ACE + m∠ECD > m∠ACE = m∠CAB = m∠A. The proof that m∠ACD > m∠B is
similar and left to the reader.

Corollary 2 The sum of the measures of any two interior angles of a triangle is less than 180◦.

Proof. Given 4ABC, extend side BC to
←→
BC and choose points E and D on

←→
BC so that E−B−C−D

(see Figure 2).

Figure 2.
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By Theorem 1, m∠A < m∠ACD, m∠B < m∠ACD, and m∠A < m∠ABE. By adding m∠C = m∠ACB
to both sides of the first two inequalities, and by adding m∠B = m∠ABC to both sides of the third we obtain

m∠A+m∠C < m∠ACD +m∠ACB = 180◦

m∠B +m∠C < m∠ACD +m∠ACB = 180◦

m∠A+m∠B < m∠ABE +m∠ABC = 180◦.

Theorem 3 If two lines are cut by a transversal and a pair of alternate interior angles are congruent, the
lines are parallel.

Proof. We prove the contrapositive. Assume that lines l and m intersect at the point R, and suppose
that a transversal t cuts line l at the point A and cuts line m at the point B. Let ∠1 and ∠2 be a pair of
alternate interior angles. Then either ∠1 is an exterior angle of 4ABR and ∠2 is a remote interior angle,
or vise versa.
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Figure 3.

In either case m∠1 6= m∠2 by the Exterior Angle Inequality (Theorem 1).

Theorem 4 (Saccheri-Legendre Theorem) The angle sum of a triangle is less than or equal to 180◦.

Proof. Assume, on the contrary, that the angle sum of 4ABC = 180◦ + p, for some p > 0. Construct
the midpoint M of side AC then extend BM its own length to point E such that B − M − E. Note
that 4ABM ∼= 4CEM by SAS. Therefore the angle sum of 4ABC = angle sum of 4ABM+ angle
sum of 4BMC = angle sum of 4CEM+ angle sum of 4BMC = angle sum of 4BEC. Furthermore,
m∠BEC = m∠ABE by CPCTC. Therefore, either m∠BEC ≤ 1

2m∠ABC or m∠EBC ≤ 1
2m∠ABC. Thus

we may replace 4ABC with 4BEC having the same angle sum as 4ABC and one angle whose measure is
≤ 1

2m∠ABC.
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Figure 4.

Now repeat this construction in 4BEC : If m∠EBC ≤ 1
2m∠ABC, construct the midpoint N of CE and

extend BN its own length to point F such that B − N − F. Then 4BEC and 4BFC have the same
angle sum and either m∠BFC ≤ 1

2m∠EBC or m∠FBC ≤ 1
2m∠EBC. Replace 4EBC with 4FBC

having the same angle sum as 4ABC and one angle whose measure is ≤ 1
4m∠ABC. On the other hand,

if m∠BEC ≤ 1
2m∠ABC, do same construction with N as the midpoint of BC and replace 4EBC with

4FEC. Continue this process indefinitely; the Archimedian property of real numbers guarantees that for
sufficiently large n, the triangle obtained after the nth iteration has the same angle sum as 4ABC and one
angle whose measure is ≤ 1

2nm∠ABC < p , in which case the sum of its other two angles is greater than
180◦, contradicting Corollary 2.
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Definition 5 The defect of 4ABC is δABC = 180◦ −m∠A−m∠B −m∠C.

Corollary 6 Every triangle has non-negative defect.

Proof. If δABC = 180◦−m∠A−m∠B−m∠C < 0◦, then the angle sum of4ABC > 180◦, contradicting
Theorem 4.

Theorem 7 (Additivity of defect) Given any triangle 4ABC and any point D between A and B,

δABC = δACD + δBCD.

C

A D B

Figure 5.

Proof. Since ∠ADC and ∠BDC are supplementary, m∠CDA +m∠CDB = 180◦. Since
−−→
CD is in the

interior of ∠ACB, m∠ACB = m∠ACD +m∠BCD. Therefore

δACD + δBCD = 180◦ −m∠ACD −m∠CDA−m∠DAC

+180◦ −m∠BCD −m∠CDB −m∠DBC

= 360◦ − (m∠CDA+m∠CDB)−m∠DAC

− (m∠ACD +m∠BCD)−m∠DBC

= 180◦ −m∠ABC −m∠BAC −m∠CDA

= δABC.

Corollary 8 Given any triangle 4ABC and any point D between A and B, the angle sum of 4ABC = 180◦

if and only if the angle sums of 4ACD and 4BCD both equal 180◦.

Proof. If the angle sums of both 4ACD and 4BCD equal 180◦, then δACD = δBCD = 0◦. By
Theorem 7, δABC = 0◦ so that the angle sum of 4ABC = 180◦. Conversely, if the angle sum of 4ABC =
180◦, then δACD + δBCD = 0◦. But by Corollary 6, δACD ≥ 0◦ and δBCD ≥ 0◦. Therefore δACD =
δBCD = 0◦ and both angle sums equal 180◦.

Theorem 9 If there is a triangle with angle sum 180◦, then a rectangle exists.

Proof. Consider a triangle 4ABC with angle sum 180◦. By Corollary 2, the sum of the measures of
any two interior angles is less than 180◦, so at most one angle is obtuse. Suppose ∠A and ∠B are acute and
construct the altitude CD. I claim that A−D−B. But if not, then either D−A−B or A−B−D. Suppose
D −A−B and consider 4DAC.

C

BAD

Figure 6.
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Then the remote interior angle ∠CDA has measure 90◦, which is greater than the measure of exterior angle
∠CAB, contradicting Theorem 1. Assuming that A − B −D leads to a similar contradiction, proving the
claim. Then by Corollary 8, δADC = δBDC = 0◦. Let us construct a rectangle from right triangle 4BCD.

By the congruence axioms, there is a unique ray
−−→
CX with X on the opposite side of

←→
BC from D such that

∠CBD ∼= ∠BCX, and there is a unique point E on
−−→
CX such that CE ∼= BD.

C E

X

BA D

Figure 7.

Then 4CBD ∼= 4BCE by SAS; therefore 4BCE is a right triangle with δBCE = 0◦ and right angle at E.
Also, sincem∠DBC+m∠BCD = 90◦, substituting corresponding parts givesm∠ECB+m∠BCD = 90◦ and
m∠DBC +m∠EBC = 90◦. Furthermore, since alternate interior angles ∠ECB and ∠DBC are congruent,←→
CEk←→DB by Theorem 3. Therefore B is an interior point of ∠ECD. By the same argument,

←→
CDk←→EB and C

is an interior point of ∠EBD. Therefore m∠ECD = m∠EBD = 90◦ and ¤CDEB is a rectangle.

Theorem 10 If a rectangle exists, then the angle sum of every triangle is 180◦.

Proof. We first prove that every right triangle has angle sum 180◦. Given a rectangle, we can use the
Archimedian property to lengthen or shorten the sides and obtain a rectangle ¤AFBC with sides AC and
BC of any prescribed length. Now given a right triangle 4E0C 0D0, construct a rectangle ¤AFBC such that
AC > D0C0 and BC > E0C0. There is a unique point D on AC and a unique point E on BC such that
4ECD ∼= 4E0C 0D0 as shown in Figure 9.
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Figure 8.

I claim δABC = 0◦. If not, then δABC > 0◦ by Corollary 6 and consequently m∠ABC + m∠BAC <
90◦. But m∠CBF = m∠ABC + m∠ABF = 90◦ and m∠CAF = m∠BAC + m∠BAF = 90◦. Therefore
m∠ABF = 90◦ −m∠ABC and m∠BAF = 90◦ −m∠BAC so that

δABF = 180◦ − 90◦ −m∠ABF −m∠BAF
= 90◦ − (90◦ −m∠ABC)− (90◦ −m∠BAC)
= m∠ABC +m∠BAC − 90◦ < 0◦,

contradicting Corollary 6 and proving the claim. Now by repeated applications of Corollary 8 we have
δBCD = 0◦ and δECD = 0◦. But 4ECD ∼= 4E0C0D0 implies δE0C 0D0 = 0◦. Thus every right triangle
has zero defect. Now by the construction in Theorem 9, an arbitrary triangle 4ABC can be appropriately
labeled so that its altitude CD lies in the interior of 4ABC and subdivides the triangle into two right
triangles (see Figure 7), each having zero defect. Thus δABC = 0◦ by Corollay 8.

Corollary 11 A rectangle exists if and only if every triangle has angle sum 180◦.
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The Angle Sum of a Triangle in Parabolic Geometry.

In this section we assume Playfair’s form of Euclid’s Parallel Postulate and prove that the angle sum of a
triangle is exactly 180◦. Geometry that assumes Eucild’s Parallel Postulate is called parabolic geometry.

Postulate 12 (Playfair) Given a line l and a point P off l, there is exactly one line through P parallel to l.

We first prove that the converse of Theorem 3 holds in parabolic geometry.

Theorem 13 If parallel lines are cut by a transversal, then alternate interior angles are congruent.

Proof. Suppose parallel lines l and m are cut by a transversal t intersecting l at A and m at B. Consider
a pair of alternate interior angles ∠1 and ∠2 and suppose that ∠1 À ∠2; then either m∠1 < m∠2 or vice
versa. If m∠1 < m∠2, there is a line l0 6= l through A such that m∠10 = m∠2 by continuity.

A
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1’
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l

m

t

l’

Figure 9.

Then ∠10 and ∠2 are congruent alternate interior angles and l0 k ←→BC by Theorem 3. But this contradicts
Playfair’s form of Eucild’s Parallel Postulate.

Theorem 14 The angle sum of a triangle is exactly 180◦.

Proof. Consider a (non-degenerate) triangle 4ABC and extend side BC to
←→
BC. Since A is off

←→
BC,

there is a unique line l through A parallel to
←→
BC. Label the angles as shown in Figure 10.
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Figure 10.

Since m∠1+m∠2+m∠3 = 180◦ and alternate interior angles are congruent by Theorem 13, the conclusion
follows.
The converse of Theorem 14 is also true:

Theorem 15 If the angle sum of every triangle is 180◦, then Eucild’s Parallel Postulate holds.

Proof. Let l be a line and let A be a point off l. Let B be the foot of the perpendicular from A to l
and choose a point C on l distinct from B. Then 4ABC has defect zero and a right angle at B. Construct
the line m through A perpendicular to

←→
AB and choose a point D distinct from A on m and on the opposite

side of
←→
AC from B. Then m k l by Theorem 3,

←→
AC is a transversal, and alternate interior angles ∠ACB and

∠DAC are congruent by Theorem 13.

A
m

l

C B

D

Figure 11.
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Letm0 be any line parallel to l that passes through A and choose a point D0 on m0 on the side of
←→
AC opposite

from B. Then
←→
AC is a transversal and ∠D0AC ∼= ∠ACB by Theorem 13. But ∠ACB ∼= ∠DAC so that

∠D0AC ∼= ∠DAC and m0 = m. Thus m is the unique line through A parallel to l.

Corollary 16 A rectangle exists if and only if Eucild’s Parallel Postulate holds.

Proof. Combine Corollary 11 with Theorems 14 and 15.
Now consider the negation of Playfair’s form of Euclid’s Parallel Postulate: There is a line l and a point

P off l such that either no line through P is parallel to l or more than one line through P is parallel to l.
This suggests two alternatives to Eucild’s Parallel Postulate:

1. (Hyperbolic Parallel Postulate) There is a line l and a point P off l such that more than one line
through P is parallel to l.

2. (Elliptic Parallel Postulate) There is a line l and a point P off l such that no line through P is parallel
to l.

We consider these alternatives in the next two sections.

The Angle Sum of a Triangle in Hyperbolic Geometry.

In this section we assume the Hyperbolic Parallel Postulate and prove that the angle sum of a triangle
is strictly less than 180◦. Geometry that assumes the Hyperbolic Parallel Postulate is called hyperbolic
geometry.
Our first order of business is to strengthen the Hyperbolic Parallel Postulate.

Theorem 17 (Hyperbolic Parallel Theorem) Given any line l and any point P off l, there is more than one
line through P parallel to l.

Proof. Consider a line l and a point P off l. Let Q be the foot of the perpendicular from P to l.

Construct a line n through P and perpendicular to
←→
PQ. Then l is parallel to n by Theorem 3, since alternate

interior angles are right angles. Choose a point R on l and distinct from Q and construct a line t through
R perpendicular l. Let S be the foot of the perpendicular from P to t; then

←→
PS is parallel to l again by

Theorem 3.

P

S

Q R

l

t

n

Figure 12.

Consider quadrilateral PQRS, in which PQ⊥QR, QR⊥RS, and RS⊥SP . Then S cannot lie on n, for if it
did, PQRS would be a rectangle, contradicting Corollary 16. Therefore

←→
PS is parallel to l and distinct from

n.

Corollary 18 Given any line l and any point P off l, there are infinitely many lines through P parallel to l.

Proof. Vary the point R in the proof of Theorem 17.

Theorem 19 The angle sum of every triangle is less than 180◦.
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Proof. Since Euclid’s Parallel Postulate fails, Corollary 16 implies that rectangles do not exist. Since
rectangles do not exist, Corollary 11 implies that triangles have non-zero defect. But by Corollary 6, every
triangle has non-negative defect. Therefore the defect is positive.
We conclude our discussion of hyperbolic geometry with the striking observation that two triangles are

congruent whenever their corresponding angles are congruent, i.e., AAA implies congruence. The requires
the following corollary to Theorem 19:

Corollary 20 All convex quadrilaterals have angle sum less than 360◦.

Proof. Consider a convex quadrilateral ¤ABCD and construct diagonal AC.

B

C

D

A

Figure 13.

By Theorem 19, the angle sums of 4ABC and 4ACD are less than 180◦. By convexity,
−−→
AB − −→AC − −−→AD

and
−−→
CB −−→CA−−−→CD. Therefore m∠BAC+ m∠CAD = m∠BAD and m∠BCA+ m∠ACD = m∠BCD. It

follows that the angle sum of ¤ABCD is the sum of the measures of the six interior angles of 4ABC and
4ACD, which is less than 360◦.

Theorem 21 If two triangles are similar, they are congruent.

Proof. On the contrary, suppose there exist similar non-congruent triangles 4ABC and 4A0B0C0.
Then corresponding angles are congruent but no pair of corresponding sides are congruent, for otherwise the
triangles would be congruent by ASA. Consider the triples (AB,AC,BC) and (A0B0, A0C 0, B0C 0). One of
these triples contains at least two lengths that are larger than the corresponding lengths in the other triple.
So suppose that AB > A0B0 and AC > A0C0. Then by definition, there exist points B00 on AB and C 00 on
AC such that AB00 = A0B0 and AC”” = A0C 0.

A’ A

C’

C’’

C

B’

B’’

B

Figure 13.

Now4AB00C 00 ∼= 4A0B0C0 by SAS; hence ∠AB00C 00 ∼= ∠B0 and ∠AC 00B00 ∼= ∠C 0 by CPCTC. By hypothesis,
∠B ∼= ∠B0 and ∠C ∼= ∠C0. Therefore we also have ∠AB00C 00 ∼= ∠B and ∠AC00B00 ∼= ∠C by the congruence
axioms. Hence the pair of alternate interior angles, one of which is ∠ABC, formed by lines←→BC and←−−→B00C00 cut
by transversal

←→
AB are congruent and

←→
BCk←−−→B00C00 by Theorem 3. It follows that quadrilateral ¤BB00C00C is

convex. Furthermore, m∠B+m∠C 00B00B = m∠AB00C00+m∠C 00B00B = 180◦ = m∠AC 00B00+m∠B00C00C =
m∠C +m∠B00C 00C and it follows that the angle sum of ¤BB00C 00C is 360◦, contradicting Corollary 20.

The Angle Sum of a Triangle in Elliptic Geometry.

In this section we assume the Parabolic Parallel Postulate. In this case, the angle sum of a triangle is strictly
greater than 180◦. Geometry that assumes the Parabolic Parallel Postulate is called parabolic geometry.
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But there’s a problem here. We can’t simply adjoin the Elliptic Parallel Postulate to neutral geometry as
we did in the Parabolic and Hyperbolic cases, for if we did there would be inconsistencies. Indeed, Theorem
3 tells us there are always parallel lines in neutral geometry, but this is contrary to the Parabolic Parallel
Postulate. So some adjustments are necessary.
To see which modifications are necessary, consider the geometry of a sphere. Lines on a sphere are great

circles, and any two great circles intersect, so there are no parallels. And that’s good. But there are still
problems here. Note that a pair of antipodal points determine infinitely many great circles (think lines of
longitude through the north and south poles). So Eucild’s first postulate fails. To remedy this, we identify
antipodal points and work in the (real) projective plane, which we think of as a hemisphere with antipodal
points along its equatorial boundary identified. Unfortunately this is the best we can do, as this surface
cannot be embedded in 3-dimensional space.
The projective plane has a surprising property: A line does not divide the plane into two sides, because

you can now leap across a great circle by passing from a given point to its (now equal) antipode, which was
in the other hemisphere (on the other side of the line) before we made the identifications. If we cut a strip
from the projective plane, it would look like a Moebius band, which is a long strip of paper with a half twist
and its two ends glued together. A Moebius band is an example of a one-sided surface. Surfaces with this
property are nonorientable.
Some of our axioms must change as well. "Betweenness" no longer makes sense for points on a great

circle, so we replace them with separation axioms (see the text by Greenberg). Thus the axioms of Elliptic
geometry consist of the same incidence, congruence and continuity axioms as neutral geometry, but the
betweenness axioms are replaced by separation axioms.
As was the case in hyperbolic geometry, we can strengthen the Elliptic Parallel Postulate.

Theorem 22 (Elliptic Parallel Theorem) Given any line l and any point P off l, every line through P
intersects l.

Proof. We prove this result in the projective plane. Note that any two distinct great circles intersect at
a pair of antipodal points of the sphere. Thus in the projective plane, every pair of distinct lines intersect
at exactly one point and there are no parallels. The conclusion now follows.

Theorem 23 The angle sum of a triangle is always greater than 180◦.

We omit the proof.

November 27, 2007.

8


