Computing the Cohomology Algebra of a Polyhedral Complex

Joint work with R. Gonzalez-Diaz & J. Lamar

Ron Umble Millersville Univiversity

Escuela de Ingeniería Informatica

27 March 2018

・ロト・日本・モート モー うへぐ

Polyhedral Complexes

 A polyhedral complex X is a regular cell complex whose k-cells are k-dim'l polytopes

Polyhedral Complexes

- A polyhedral complex X is a regular cell complex whose k-cells are k-dim'l polytopes
- ► X is simplicial if its k-cells are k-simplices

Polyhedral Complexes

- A polyhedral complex X is a regular cell complex whose k-cells are k-dim'l polytopes
- ► X is simplicial if its k-cells are k-simplices

► X is *cubical* if its *k*-cells are *k*-cubes

► The cellular chains of X, denoted C_{*}(X), is the graded Z₂-vector space generated by the k-cells of X

- ► The cellular chains of X, denoted C_{*}(X), is the graded Z₂-vector space generated by the k-cells of X
- Example: If P is a polygon, C_{*} (P) is generated by the vertices, edges, and region of P

- ► The cellular chains of X, denoted C_{*}(X), is the graded Z₂-vector space generated by the k-cells of X
- Example: If P is a polygon, C_{*} (P) is generated by the vertices, edges, and region of P
- ▶ The geometric boundary induces a **differential operator** ∂ : $C_*(X) \rightarrow C_{*-1}(X)$ such that $\partial \circ \partial = 0$

(日) (同) (三) (三) (三) (○) (○)

- ► The cellular chains of X, denoted C_{*}(X), is the graded Z₂-vector space generated by the k-cells of X
- Example: If P is a polygon, C_{*} (P) is generated by the vertices, edges, and region of P
- ▶ The geometric boundary induces a **differential operator** ∂ : $C_*(X) \rightarrow C_{*-1}(X)$ such that $\partial \circ \partial = 0$
- A diagonal approximation on X is a map $\Delta_X : X \to X \times X$ that

- ► The cellular chains of X, denoted C_{*}(X), is the graded Z₂-vector space generated by the k-cells of X
- Example: If P is a polygon, C_{*} (P) is generated by the vertices, edges, and region of P
- ▶ The geometric boundary induces a **differential operator** $\partial : C_*(X) \rightarrow C_{*-1}(X)$ such that $\partial \circ \partial = 0$
- A diagonal approximation on X is a map $\Delta_X : X \to X \times X$ that
 - ▶ Is homotopic to the geometric diagonal $\Delta : x \mapsto (x, x)$

- ► The cellular chains of X, denoted C_{*}(X), is the graded Z₂-vector space generated by the k-cells of X
- Example: If P is a polygon, C_{*} (P) is generated by the vertices, edges, and region of P
- ▶ The geometric boundary induces a **differential operator** $\partial : C_*(X) \rightarrow C_{*-1}(X)$ such that $\partial \circ \partial = 0$
- A diagonal approximation on X is a map $\Delta_X : X \to X \times X$ that
 - ▶ Is homotopic to the geometric diagonal $\Delta : x \mapsto (x, x)$
 - Commutes with the boundary operator

$$\Delta_X \partial = (\partial \otimes \mathit{Id} + \mathit{Id} \otimes \partial) \, \Delta_X$$

Goals of the Talk

1. Transform a simplicial or cubical complex X into a polyhedral complex P

Goals of the Talk

1. Transform a simplicial or cubical complex X into a polyhedral complex P

2. Given a diagonal on $C_{*}(X)$, induce a diagonal on $C_{*}(P)$

Alexander-Whitney Diagonal on the Simplex

 $\Delta_{s}\left(012
ight)=0\otimes012+01\otimes12+012\otimes2$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Serre Diagonal on the Cube

$$\Delta_{\mathtt{I}}(\mathtt{I}^n) = \sum_{(u_1, \dots, u_n) \in \{0, \mathtt{I}\}^{\times n}} u_1 \cdots u_n \otimes u'_1 \cdots u'_n$$
$$(0' = \mathtt{I} \text{ and } \mathtt{I}' = 1)$$

$$\Delta_{\mathtt{I}}\left(\mathtt{I}^2\right) = \mathtt{00}\otimes\mathtt{II} + \mathtt{0I}\otimes\mathtt{I1} + \mathtt{I0}\otimes\mathtt{1I} + \mathtt{II}\otimes\mathtt{11}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 _ のへぐ

S-U Diagonal on the Associahedron

 $\Delta_{K}(\Psi) = \Psi \otimes \Psi + \Psi \otimes \Psi + \Psi \otimes \Psi + \Psi \otimes \Psi + \Psi \otimes (\Psi + \Psi) + \Psi \otimes \Psi + \Psi \otimes \Psi$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

æ

• Vertices labeled v_1, v_2, \ldots, v_n

- Vertices labeled v_1, v_2, \ldots, v_n
- Edges with endpoints v_i and v_{i+1} labeled e_i for i < n

э

• Vertices labeled v_1, v_2, \ldots, v_n

• Edges with endpoints v_i and v_{i+1} labeled e_i for i < n

・ロト ・ 雪 ト ・ ヨ ト

3

Edge with endpoints v_n and v₁ labeled e_n

Vertices labeled v₁, v₂, ..., v_n

- Edges with endpoints v_i and v_{i+1} labeled e_i for i < n
- Edge with endpoints v_n and v₁ labeled e_n
- \triangleright v_1 is the **initial vertex**; v_n is the **terminal vertex**

Vertices labeled v₁, v₂, ..., v_n

- Edges with endpoints v_i and v_{i+1} labeled e_i for i < n
- Edge with endpoints v_n and v₁ labeled e_n
- v_1 is the initial vertex; v_n is the terminal vertex
- Edges are directed from v₁ to v_n

Theorem (D. Kravatz, 2008 thesis) There is a diagonal approximation on C_{*} (P) defined by

$$\Delta_{P}(v_{i}) = v_{i} \otimes v_{i}$$

$$\Delta_{P}(e_{i}) = v_{i} \otimes e_{i} + e_{i} \otimes v_{i+1} \text{ if } i < n$$

$$\Delta_{P}(e_{n}) = v_{1} \otimes e_{n} + e_{n} \otimes v_{n}$$

$$\Delta_{P}(P) = v_{1} \otimes P + P \otimes v_{n} + \sum_{0 < i_{1} < i_{2} < n} e_{i_{1}} \otimes e_{i_{2}}$$

SAC

• Let v_t be the terminal vertex

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Let v_t be the terminal vertex
- Introduce a new edge e_0 from v_1 to v_t

・ロト ・ 一下・ ・ ヨト ・

B b

- Let v_t be the terminal vertex
- Introduce a new edge e_0 from v_1 to v_t

э

• Let P_1 be the subpolygon with vertices v_1, v_2, \ldots, v_t

- Let v_t be the terminal vertex
- Introduce a new edge e_0 from v_1 to v_t

- Let P_1 be the subpolygon with vertices v_1, v_2, \ldots, v_t
- Let P_2 be the subpolygon with vertices $v_1, v_t, v_{t+1}, \ldots, v_n$

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ④ >

- Let v_t be the terminal vertex
- Introduce a new edge e_0 from v_1 to v_t

- Let P_1 be the subpolygon with vertices v_1, v_2, \ldots, v_t
- Let P_2 be the subpolygon with vertices $v_1, v_t, v_{t+1}, \ldots, v_n$

э

• Edges are directed from v_1 to v_t

Corollary Let P be an n-gon with initial vertex v_1 and terminal vertex v_t . Then

$$\Delta_{P}'(P) = v_1 \otimes P + P \otimes v_t + \sum_{0 < i_1 < i_2 < t} e_{i_1} \otimes e_{i_2} + \sum_{n \ge i_1 > i_2 \ge t} e_{i_1} \otimes e_{i_2}$$

is a diagonal approximation on $C_*(P)$

Let X_g be a closed compact surface of genus g. The celebrated Classification of Closed Compact Surfaces states that X_g is homeomorphic to a

• Sphere with $g \ge 0$ handles when orientable

Let X_g be a closed compact surface of genus g. The celebrated Classification of Closed Compact Surfaces states that X_g is homeomorphic to a

- Sphere with $g \ge 0$ handles when orientable
- ► Connected sum of g ≥ 1 real projective planes when unorientable

Let X_g be a closed compact surface of genus g. The celebrated Classification of Closed Compact Surfaces states that X_g is homeomorphic to a

- Sphere with $g \ge 0$ handles when orientable
- ► Connected sum of g ≥ 1 real projective planes when unorientable

• When $g \ge 1$, X_g is the quotient of a

Let X_g be a closed compact surface of genus g. The celebrated Classification of Closed Compact Surfaces states that X_g is homeomorphic to a

- Sphere with $g \ge 0$ handles when orientable
- ► Connected sum of g ≥ 1 real projective planes when unorientable

- When $g \ge 1$, X_g is the quotient of a
 - 4g-gon when orientable

Let X_g be a closed compact surface of genus g. The celebrated Classification of Closed Compact Surfaces states that X_g is homeomorphic to a

- ▶ Sphere with g ≥ 0 handles when orientable
- ► Connected sum of g ≥ 1 real projective planes when unorientable

- When $g \ge 1$, X_g is the quotient of a
 - 4g-gon when orientable
 - 2g-gon when unorientable

Polygonal Decomposition of a Torus

・ロト ・聞ト ・ヨト ・ヨト

æ

Polygonal Decomposition of Real Projective Plane

◆ロ ▶ ◆母 ▶ ◆臣 ▶ ◆臣 ▶ ○臣 ○ のへで

Polygonal Decomposition of a Klein Bottle

< ロ > < 同 > < 回 > < 回 >

э

Connected Sums

To obtain the connected sum X # Y of two surfaces, remove the interior of a disk from X and from Y then glue the two surfaces together along their boundaries

Connected sums of four real projective planes and three tori

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ④ >

< □ > < 同 > < 回 > .

< □ > < 同 > < 回 > .

[▶] one 0-cell v

- ▶ one 0-cell v
- ▶ 2*g* 1-cells $(e_1, e_2), \ldots, (e_{2g-1}, e_{2g})$

-

- ▶ one 0-cell v
- ▶ 2*g* 1-cells $(e_1, e_2), \ldots, (e_{2g-1}, e_{2g})$
- ▶ one 2-cell T_g

A Diagonal on the g-fold Torus

► A diagonal on T_g is defined by

$$\Delta_{T_g}(T_g) = \mathbf{v} \otimes T_g + T_g \otimes \mathbf{v} + \sum_{i=1}^g \mathbf{e}_{2i-1} \otimes \mathbf{e}_{2i} + \mathbf{e}_{2i} \otimes \mathbf{e}_{2i-1}$$

(日)

A Diagonal on the g-fold Projective Plane

► A diagonal on RP_g is defined by

$$\Delta_{RP_g}(RP_g) = \mathsf{v} \otimes RP_g + RP_g \otimes \mathsf{v} + \sum_{i=1}^g \mathsf{e}_i \otimes \mathsf{e}_i$$

▲口▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - 釣A@

A Diagonal on the g-fold Projective Plane

A diagonal on RP_g is defined by

$$\Delta_{RP_g}(RP_g) = v \otimes RP_g + RP_g \otimes v + \sum_{i=1}^g e_i \otimes e_i$$

э

• Δ_{T_g} and Δ_{RP_g} are strikingly different and determine the homeomorphism type of the surface

Choose a polygonal decomposition of X_g

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Choose a polygonal decomposition of X_g

▶ $\partial = 0$ on $C_*(X_g)$ implies $H_k(X_g) = C_k(X_g)$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Choose a polygonal decomposition of X_g

▶
$$\partial = 0$$
 on $C_*(X_g)$ implies $H_k(X_g) = C_k(X_g)$

Cohomology is the linear dual of homology

$$H^{k}(X_{g}) = Hom(H_{k}(X_{g}), \mathbb{Z}_{2})$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Choose a polygonal decomposition of X_g

►
$$\partial = 0$$
 on $C_*(X_g)$ implies $H_k(X_g) = C_k(X_g)$

Cohomology is the linear dual of homology

$$H^{k}(X_{g}) = Hom\left(H_{k}(X_{g}), \mathbb{Z}_{2}\right)$$

+ If $x \in H_{k}(X_{g})$, define $x^{*}(e) = \begin{cases} 1, & \text{if } e = x \\ 0, & \text{otherwise} \end{cases}$

Choose a polygonal decomposition of X_g

►
$$\partial = 0$$
 on $C_*(X_g)$ implies $H_k(X_g) = C_k(X_g)$

Cohomology is the linear dual of homology

$$H^{k}(X_{g}) = Hom(H_{k}(X_{g}), \mathbb{Z}_{2})$$

If $x \in H_{k}(X_{g})$, define $x^{*}(e) = \begin{cases} 1, & \text{if } e = x \\ 0, & \text{otherwise} \end{cases}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•
$$H^{k}(X_{g}) = \{x^{*} : x \in H_{k}(X_{g})\}$$

▶ Given
$$x^*$$
, $y^* \in H^*(X)$, define $x^* \smile y^* = m(x^* \otimes y^*) \Delta_X$

► Given x^* , $y^* \in H^*(X)$, define $x^* \smile y^* = m(x^* \otimes y^*) \Delta_X$

・ロト・日本・モート モー うへぐ

• The terms of $\Delta_X(x)$ determine the factors of x^*

- ► Given x^* , $y^* \in H^*\left(X\right)$, define $x^* \smile y^* = m\left(x^* \otimes y^*\right) \Delta_X$
- The terms of $\Delta_X(x)$ determine the factors of x^*
- Example

$$\Delta_{T_g}(T_g) = \mathbf{v} \otimes T_g + T_g \otimes \mathbf{v} + \sum_{i=1}^g \mathbf{e}_{2i-1} \otimes \mathbf{e}_{2i} + \mathbf{e}_{2i} \otimes \mathbf{e}_{2i-1}$$
$$(\mathbf{e}_{2i-1}^* \smile \mathbf{e}_{2i}^*) (T_g) = m(\mathbf{e}_{2i-1}^* \otimes \mathbf{e}_{2i}^*) \Delta_{T_g} (T_g)$$
$$= m(\mathbf{e}_{2i-1}^* \otimes \mathbf{e}_{2i}^*) (\mathbf{e}_{2i-1} \otimes \mathbf{e}_{2i})$$
$$= m(1 \otimes 1) = 1$$

・ロト・日本・モート モー うへぐ

- ► Given x^* , $y^* \in H^*\left(X\right)$, define $x^* \smile y^* = m\left(x^* \otimes y^*\right) \Delta_X$
- The terms of $\Delta_X(x)$ determine the factors of x^*
- Example

$$\Delta_{T_g}(T_g) = v \otimes T_g + T_g \otimes v + \sum_{i=1}^g e_{2i-1} \otimes e_{2i} + e_{2i} \otimes e_{2i-1}$$
$$(e_{2i-1}^* \smile e_{2i}^*) (T_g) = m(e_{2i-1}^* \otimes e_{2i}^*) \Delta_{T_g} (T_g)$$
$$= m(e_{2i-1}^* \otimes e_{2i}^*) (e_{2i-1} \otimes e_{2i})$$
$$= m(1 \otimes 1) = 1$$

▶ $e^*_{2i-1} \smile e^*_{2i}$ acting non-trivially on T_g implies

$$e_{2i-1}^* \smile e_{2i}^* = T_g^*$$

$$\Delta_{T_g}(T_g) = \mathbf{v} \otimes T_g + T_g \otimes \mathbf{v} + \sum_{i=1}^g \mathbf{e}_{2i-1} \otimes \mathbf{e}_{2i} + \mathbf{e}_{2i} \otimes \mathbf{e}_{2i-1} \Rightarrow$$

$$\mathbf{v}^* \smile T_g^* = T_g^* \smile \mathbf{v}^* = \mathbf{e}_1^* \smile \mathbf{e}_2^* = \mathbf{e}_2^* \smile \mathbf{e}_1^* =$$

$$\cdots = \mathbf{e}_{2g-1}^* \smile \mathbf{e}_{2g}^* = \mathbf{e}_{2g}^* \smile \mathbf{e}_{2g-1}^* = T_g^*$$

$$\Delta_{T_g}(T_g) = \mathbf{v} \otimes T_g + T_g \otimes \mathbf{v} + \sum_{i=1}^g \mathbf{e}_{2i-1} \otimes \mathbf{e}_{2i} + \mathbf{e}_{2i} \otimes \mathbf{e}_{2i-1} \Rightarrow$$

$$\mathbf{v}^* \smile T_g^* = T_g^* \smile \mathbf{v}^* = \mathbf{e}_1^* \smile \mathbf{e}_2^* = \mathbf{e}_2^* \smile \mathbf{e}_1^* =$$

$$\cdots = \mathbf{e}_{2g-1}^* \smile \mathbf{e}_{2g}^* = \mathbf{e}_{2g}^* \smile \mathbf{e}_{2g-1}^* = T_g^*$$

$$\Delta_{T_g}(T_g) = \mathbf{v} \otimes T_g + T_g \otimes \mathbf{v} + \sum_{i=1}^g \mathbf{e}_{2i-1} \otimes \mathbf{e}_{2i} + \mathbf{e}_{2i} \otimes \mathbf{e}_{2i-1} \Rightarrow$$

$$\mathbf{v}^* \smile T_g^* = T_g^* \smile \mathbf{v}^* = \mathbf{e}_1^* \smile \mathbf{e}_2^* = \mathbf{e}_2^* \smile \mathbf{e}_1^* =$$

$$\cdots = \mathbf{e}_{2g-1}^* \smile \mathbf{e}_{2g}^* = \mathbf{e}_{2g}^* \smile \mathbf{e}_{2g-1}^* = T_g^*$$

$$\Delta_{T_g}(e_{2i}) = \mathbf{v} \otimes e_{2i} + e_{2i} \otimes \mathbf{v} \Rightarrow$$
$$\mathbf{v}^* \smile \mathbf{e}_{2i}^* = \mathbf{e}_{2i}^* \smile \mathbf{v}^* = \mathbf{e}_{2i}^*$$

 Factors in a non-vanishing cup product of 1-dim'l classes are dual to 1-cells in the same component of the connected sum

$$\Delta_{T_g}(T_g) = \mathbf{v} \otimes T_g + T_g \otimes \mathbf{v} + \sum_{i=1}^g \mathbf{e}_{2i-1} \otimes \mathbf{e}_{2i} + \mathbf{e}_{2i} \otimes \mathbf{e}_{2i-1} \Rightarrow$$

$$\mathbf{v}^* \smile T_g^* = T_g^* \smile \mathbf{v}^* = \mathbf{e}_1^* \smile \mathbf{e}_2^* = \mathbf{e}_2^* \smile \mathbf{e}_1^* =$$

$$\cdots = \mathbf{e}_{2g-1}^* \smile \mathbf{e}_{2g}^* = \mathbf{e}_{2g}^* \smile \mathbf{e}_{2g-1}^* = T_g^*$$

$$\Delta_{T_g}(e_{2i}) = \mathbf{v} \otimes e_{2i} + e_{2i} \otimes \mathbf{v} \Rightarrow$$
$$\mathbf{v}^* \smile \mathbf{e}_{2i}^* = \mathbf{e}_{2i}^* \smile \mathbf{v}^* = \mathbf{e}_{2i}^*$$

 Factors in a non-vanishing cup product of 1-dim'l classes are dual to 1-cells in the same component of the connected sum

$$\Delta_{T_g}(T_g) = \mathbf{v} \otimes T_g + T_g \otimes \mathbf{v} + \sum_{i=1}^g \mathbf{e}_{2i-1} \otimes \mathbf{e}_{2i} + \mathbf{e}_{2i} \otimes \mathbf{e}_{2i-1} \Rightarrow$$

$$\mathbf{v}^* \smile T_g^* = T_g^* \smile \mathbf{v}^* = \mathbf{e}_1^* \smile \mathbf{e}_2^* = \mathbf{e}_2^* \smile \mathbf{e}_1^* =$$

$$\cdots = \mathbf{e}_{2g-1}^* \smile \mathbf{e}_{2g}^* = \mathbf{e}_{2g}^* \smile \mathbf{e}_{2g-1}^* = T_g^*$$

$$\Delta_{T_g}(e_{2i}) = \mathbf{v} \otimes e_{2i} + e_{2i} \otimes \mathbf{v} \Rightarrow$$
$$\mathbf{v}^* \smile \mathbf{e}_{2i}^* = \mathbf{e}_{2i}^* \smile \mathbf{v}^* = \mathbf{e}_{2i}^*$$

- Factors in a non-vanishing cup product of 1-dim'l classes are dual to 1-cells in the same component of the connected sum
- All 1-dim'l cup squares vanish
- $H^*(T_g)$ is a graded commutative algebra with identity v^*

$$\Delta_{RP_g}(RP_g) = v \otimes RP_g + RP_g \otimes v + \sum_{i=1}^g e_i \otimes e_i \Rightarrow$$

$$v^* \smile RP_g^* = RP_g^* \smile v^* = e_1^* \smile e_1^* =$$

$$\cdots = e_g^* \smile e_g^* = RP_g^*$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

$$\Delta_{RP_g}(RP_g) = v \otimes RP_g + RP_g \otimes v + \sum_{i=1}^g e_i \otimes e_i \Rightarrow$$

$$v^* \smile RP_g^* = RP_g^* \smile v^* = e_1^* \smile e_1^* =$$

$$\cdots = e_g^* \smile e_g^* = RP_g^*$$

•
$$e_i^* \smile e_j^* = 0$$
 for all $i \neq j$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > Ξ のへで

$$\Delta_{RP_g}(RP_g) = \mathbf{v} \otimes RP_g + RP_g \otimes \mathbf{v} + \sum_{i=1}^g e_i \otimes e_i \Rightarrow$$

$$\mathbf{v}^* \smile RP_g^* = RP_g^* \smile \mathbf{v}^* = e_1^* \smile e_1^* =$$

$$\cdots = e_g^* \smile e_g^* = RP_g^*$$

•
$$e_i^* \smile e_j^* = 0$$
 for all $i \neq j$

All non-vanishing cup products are squares

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

•
$$e_i^* \smile e_j^* = 0$$
 for all $i \neq j$

- All non-vanishing cup products are squares
- $H^*(RP_g)$ is a graded commutative algebra with identity v^*

 The algebra structure of H^{*} (X_g) is a complete topological invariant

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- The algebra structure of H^{*} (X_g) is a complete topological invariant
 - Cup squares of 1-dim'l classes vanish iff X_g is orientabile

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- The algebra structure of H^{*} (X_g) is a complete topological invariant
 - Cup squares of 1-dim'l classes vanish iff X_g is orientabile
 - ► The number of 1-dim'l generators determines the genus g

- The algebra structure of H^{*} (X_g) is a complete topological invariant
 - Cup squares of 1-dim'l classes vanish iff X_g is orientabile
 - ► The number of 1-dim'l generators determines the genus g
 - ▶ 2g distinct 1-dim'l generators if orientable and g otherwise

- The algebra structure of H^{*} (X_g) is a complete topological invariant
 - Cup squares of 1-dim'l classes vanish iff X_g is orientabile
 - ► The number of 1-dim'l generators determines the genus g
 - \blacktriangleright 2g distinct 1-dim'l generators if orientable and g otherwise
- A polygonal cell decomposition of X_g produces a diagonal Δ_{X_g}

- The algebra structure of H^{*} (X_g) is a complete topological invariant
 - Cup squares of 1-dim'l classes vanish iff X_g is orientabile
 - The number of 1-dim'l generators determines the genus g
 - 2g distinct 1-dim'l generators if orientable and g otherwise
- A polygonal cell decomposition of X_g produces a diagonal Δ_{X_g}

► Algebra structure of $H^*(X_g)$ follows immediately from Δ_{X_g}

STRATEGY:

Given a simplicial complex X with its A-W diagonal

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

STRATEGY:

Given a simplicial complex X with its A-W diagonal

Iteratively apply a chain contraction to

STRATEGY:

Given a simplicial complex X with its A-W diagonal

- Iteratively apply a chain contraction to
 - merge adjacent cells and

STRATEGY:

- Given a simplicial complex X with its A-W diagonal
- Iteratively apply a chain contraction to
 - merge adjacent cells and
 - induce a diagonal on the resulting polyhedral complex

STRATEGY:

- Given a simplicial complex X with its A-W diagonal
- Iteratively apply a chain contraction to
 - merge adjacent cells and
 - induce a diagonal on the resulting polyhedral complex
- Compute the cohomology algebra of the polyhedral complex
• Let (X, ∂) be a regular cell complex

- Let (X, ∂) be a regular cell complex
- Assume a k-cell e is the intersection of exactly two (k + 1)-cells a and b

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Let (X, ∂) be a regular cell complex
- Assume a k-cell e is the intersection of exactly two (k + 1)-cells a and b
- ▶ Remove *int* $(a \cup b)$ and attach a (k + 1)-cell *c* along $\partial (a \cup b)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

- Let (X, ∂) be a regular cell complex
- Assume a k-cell e is the intersection of exactly two (k + 1)-cells a and b
- ▶ Remove *int* $(a \cup b)$ and attach a (k + 1)-cell *c* along $\partial (a \cup b)$
- Obtain the cell complex (X', ∂') with fewer cells

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

There exist chain maps

► $f: C_*(X) \rightarrow C_*(X')$

There exist chain maps

▶ $f: C_*(X) \to C_*(X')$ ▶ $g: C_*(X') \to C_*(X)$

There exist chain maps

►
$$f: C_*(X) \to C_*(X')$$

► $g: C_*(X') \to C_*(X)$
► $\phi: C_*(X) \to C_{*+1}(X)$ defined on generators by
 $f(e) = \partial a + e$ $g(c) = a + b$
 $f(a) = 0$ $g(\sigma) = \sigma, \sigma \neq c$
 $f(b) = c$ $\phi(e) = a$
 $f(\sigma) = \sigma, \sigma \neq e, a, b$ $\phi(\sigma) = 0, \sigma \neq e$

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注目 のへ(?)

► $fg = Id_{C_*(X')}$ and ϕ is a chain homotopy from gf to $Id_{C_*(X)}$ $\partial \phi + \phi \partial = Id_{C_*(X)} + gf$

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

• $fg = Id_{C_*(X')}$ and ϕ is a chain homotopy from gf to $Id_{C_*(X)}$

$$\partial \phi + \phi \partial = \mathsf{Id}_{\mathcal{C}_*(X)} + \mathsf{gf}$$

g is a chain homotopy equivalence

▶ $\mathit{fg} = \mathit{Id}_{\mathcal{C}_*(X')}$ and ϕ is a chain homotopy from gf to $\mathit{Id}_{\mathcal{C}_*(X)}$

$$\partial \phi + \phi \partial = Id_{\mathcal{C}_*(X)} + gf$$

- g is a chain homotopy equivalence
- (f, g, φ) is called a *chain contraction of C*_{*} (X) *onto C*_{*} (X') (Introduced by Henri Cartan 1904-2008)

Theorem A chain contraction (f, g, φ, C_{*}(X), C_{*}(X')) preserves the algebraic topology of X

- Theorem A chain contraction (f, g, φ, C_{*}(X), C_{*}(X')) preserves the algebraic topology of X
- Given a diagonal

$$\Delta_{X}:C_{*}\left(X\right)\rightarrow C_{*}\left(X\right)\otimes C_{*}\left(X\right)$$

the composition

$$\Delta_{X'} = (f \otimes f) \circ \Delta_X \circ g$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Theorem A chain contraction (f, g, φ, C_{*}(X), C_{*}(X')) preserves the algebraic topology of X
- Given a diagonal

$$\Delta_{X}:C_{*}\left(X\right)\rightarrow C_{*}\left(X\right)\otimes C_{*}\left(X\right)$$

the composition

$$\Delta_{X'} = (f \otimes f) \circ \Delta_X \circ g$$

▶ Is a diagonal $\Delta_{X'}$: C_* $(X') \rightarrow C_*$ $(X') \otimes C_*$ (X')

- Theorem A chain contraction (f, g, φ, C_{*}(X), C_{*}(X')) preserves the algebraic topology of X
- Given a diagonal

$$\Delta_{X}:C_{*}\left(X\right)\rightarrow C_{*}\left(X\right)\otimes C_{*}\left(X\right)$$

the composition

$$\Delta_{X'} = (f \otimes f) \circ \Delta_X \circ g$$

- ▶ Is a diagonal $\Delta_{X'}$: $C_*(X') \rightarrow C_*(X') \otimes C_*(X')$
- If Δ_X is homotopy cocommutative, so is $\Delta_{X'}$

- Theorem A chain contraction (f, g, φ, C_{*}(X), C_{*}(X')) preserves the algebraic topology of X
- Given a diagonal

$$\Delta_{X}:C_{*}\left(X\right)\rightarrow C_{*}\left(X\right)\otimes C_{*}\left(X\right)$$

the composition

$$\Delta_{X'} = (f \otimes f) \circ \Delta_X \circ g$$

- ▶ Is a diagonal $\Delta_{X'}$: $C_*(X') \rightarrow C_*(X') \otimes C_*(X')$
- If Δ_X is homotopy cocommutative, so is $\Delta_{X'}$
- If ∆_X is homotopy coassociative, so is ∆_{X'}

Example: Merging Adjacent 2-Simplices

X'

Х

▲ロト ▲帰ト ▲ヨト ▲ヨト - ヨ - の々ぐ

 $\begin{array}{ll} f\left(e\right)=\partial a+e & g\left(c\right)=a+b \\ f\left(a\right)=0 & g\left(\sigma\right)=\sigma, \ \sigma\neq c \\ f\left(b\right)=c & \phi\left(e\right)=a \\ f\left(\sigma\right)=\sigma, \ \sigma\neq e, a, b & \phi\left(\sigma\right)=0, \ \sigma\neq e \end{array}$

 $\blacktriangleright \Delta_{X'}(c) = \left[(f \otimes f) \circ \Delta_X \circ g \right](c) = (f \otimes f) \left(\Delta_X (a+b) \right)$

Example: Merging Adjacent 2-Simplices

X'

Х

- $\begin{array}{ll} f\left(e\right)=\partial a+e & g\left(c\right)=a+b \\ f\left(a\right)=0 & g\left(\sigma\right)=\sigma, \; \sigma\neq c \\ f\left(b\right)=c & \phi\left(e\right)=a \\ f\left(\sigma\right)=\sigma, \; \sigma\neq e, a, b & \phi\left(\sigma\right)=0, \; \sigma\neq e \end{array}$
- $\Delta_{X'}(c) = [(f \otimes f) \circ \Delta_X \circ g](c) = (f \otimes f) (\Delta_X (a+b))$ $= (f \otimes f) [1 \otimes a + 14 \otimes 43 + a \otimes 3 + 1 \otimes b + 12 \otimes 23 + b \otimes 3]$

Example: Merging Adjacent 2-Simplices

X'

Χ

▲□▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ - ヨ - の々で

 $\begin{array}{ll} f\left(e\right)=\partial a+e & g\left(c\right)=a+b \\ f\left(a\right)=0 & g\left(\sigma\right)=\sigma, \; \sigma\neq c \\ f\left(b\right)=c & \phi\left(e\right)=a \\ f\left(\sigma\right)=\sigma, \; \sigma\neq e, a, b & \phi\left(\sigma\right)=0, \; \sigma\neq e \end{array}$

 $\Delta_{X'}(c) = [(f \otimes f) \circ \Delta_X \circ g](c) = (f \otimes f) (\Delta_X (a+b))$ $= (f \otimes f) [1 \otimes a + 14 \otimes 43 + a \otimes 3 + 1 \otimes b + 12 \otimes 23 + b \otimes 3]$ $= 1 \otimes c + 12 \otimes 23 + 14 \otimes 43 + c \otimes 3$

The Cohomology Algebra of a Torus

$$\Delta_{\mathcal{T}}(\gamma) = \mathbf{v} \otimes \gamma + \mathbf{a} \otimes \mathbf{\beta} + \mathbf{\beta} \otimes \mathbf{a} + \gamma \otimes \mathbf{v}$$
$$\mathbf{a}^* \smile \mathbf{\beta}^* = \mathbf{\beta}^* \smile \mathbf{a}^* = \gamma^*$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○□ のへで

The Cohomology Algebra of T#T via Chain Contraction

$$\begin{split} \bar{\Delta}_{T\#T}'(T\#T) &= [(f \otimes f) \circ \bar{\Delta}_X \circ g] (T\#T) \\ &= [(f \otimes f) \circ \bar{\Delta}_X] (T_1 + T_2) \\ &= (f \otimes f) [\alpha_1 \otimes \beta_1 + e \otimes (\beta_1 + \alpha_1) + \beta_1 \otimes \alpha_1 \\ &+ \alpha_2 \otimes \beta_2 + e \otimes (\beta_2 + \alpha_2) + \beta_2 \otimes \alpha_2] \\ &= \alpha_1 \otimes \beta_1 + \beta_1 \otimes \alpha_1 + \alpha_2 \otimes \beta_2 + \beta_2 \otimes \alpha_2 \end{split}$$

$$\alpha_i^* \smile \beta_i^* = \beta_i^* \smile \alpha_i^* = T \# T^*$$

Generalization of Kravatz's Diagonal on an n-gon

Theorem (G-L-U) Let X be a 3D polyhedral complex with vertices numbered arbitrarily from 1 to n. Represent a k-gon P of X as an ordered k-tuple of vertices $\langle i_1, \ldots, i_k \rangle$, where $i_1 = \min\{i_1, \ldots, i_k\}$, i_1 is adjacent to i_k , and i_j is adjacent to i_{j+1} for 1 < j < k. Then

$$\Delta_P(P) = i_1 \otimes P + P \otimes i_{m(k)} + \sum_{j=2}^{m(k)-1} (u_2 + e_2 + \dots + \lambda_j e_j) \otimes e_j + \sum_{j=m(k)}^{k-1} [(1+\lambda_j) e_j + e_{j+1} + \dots + e_{k-1} + u_k] \otimes e_j,$$

where $i_{m(k)} = \max \{i_2, \dots, i_k\}$, $\lambda_j = 0$ iff $i_j < i_{j+1}$, $\{u_j = \langle i_1, i_j \rangle\}_{2 \le j \le k}$ and $\{e_j = \langle i_j i_{j+1} \rangle\}_{2 \le j \le k-1}$

Computational Considerations

X'

ſ		Number of 2-cells	Cup product computed in
	X	1,638	28.00 sec
ĺ	Χ'	46	1.04 sec

Trabecular Bone

 Makes up the inner layer of the bone and has a spongy, honeycomb-like structure.

Healthy bone

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Micro-CT Images of a Trabecular Bone

Representative 1-cycles

Non-vanishing cup products: $\alpha_2^* \alpha_4^*$, $\alpha_2^* \alpha_5^*$, $\alpha_2^* \alpha_9^*$, $\alpha_3^* \alpha_8^*$, $\alpha_4^* \alpha_5^*$

 Computational methods such as these allow us to identify diseased tissue

э

Thank you!