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Polyhedral Complexes
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k-cells are k-dim’l polytopes

I X is simplicial if its k-cells are k-simplices
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Diagonal Approximations
I The cellular chains of X , denoted C∗ (X ) , is the graded

Z2-vector space generated by the k-cells of X

I Example: If P is a polygon, C∗ (P) is generated by the
vertices, edges, and region of P

I The geometric boundary induces a differential operator
∂ : C∗ (X )→ C∗−1 (X ) such that ∂ ◦ ∂ = 0

I A diagonal approximation on X is a map ∆X : X → X × X
that

I Is homotopic to the geometric diagonal ∆ : x 7→ (x , x)
I Commutes with the boundary operator

∆X ∂ = (∂⊗ Id + Id ⊗ ∂)∆X
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Goals of the Talk

1. Transform a simplicial or cubical complex X into a polyhedral
complex P

2. Given a diagonal on C∗ (X ) , induce a diagonal on C∗ (P)
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Alexander-Whitney Diagonal on the Simplex

∆s (012 · · · n) =
n

∑
i=0
012 · · · i ⊗ i · · · n

∆s (012) = 0⊗ 012+ 01⊗ 12+ 012⊗ 2



Serre Diagonal on the Cube

∆I (In) = ∑
(u1,...,un)∈{0,I}×n

u1 · · · un ⊗ u′1 · · · u′n
(0′ = I and I′ = 1)

∆I
(
I2
)
= 00⊗ II+ 0I⊗ I1+ I0⊗ 1I+ II⊗ 11



S-U Diagonal on the Associahedron



A Diagonal on an n-gon P

I Vertices labeled v1, v2, . . . , vn

I Edges with endpoints vi and vi+1 labeled ei for i < n

I Edge with endpoints vn and v1 labeled en

I v1 is the initial vertex; vn is the terminal vertex

I Edges are directed from v1 to vn
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A Diagonal on an n-gon P

I Theorem (D. Kravatz, 2008 thesis) There is a diagonal
approximation on C∗ (P) defined by

∆P (vi ) = vi ⊗ vi
∆P (ei ) = vi ⊗ ei + ei ⊗ vi+1 if i < n
∆P (en) = v1 ⊗ en + en ⊗ vn
∆P (P) = v1 ⊗ P + P ⊗ vn + ∑

0<i1<i2<n
ei1 ⊗ ei2



A General Diagonal on an n-gon P
I Let vt be the terminal vertex

I Introduce a new edge e 0 from v1 to vt

I Let P1 be the subpolygon with vertices v1, v2, . . . , vt
I Let P2 be the subpolygon with vertices v1, vt , vt+1, . . . , vn
I Edges are directed from v1 to vt
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A General Diagonal on an n-gon P

Corollary Let P be an n-gon with initial vertex v1 and terminal
vertex vt . Then

∆′P (P) = v1 ⊗ P + P ⊗ vt + ∑
0<i1<i2<t

ei1 ⊗ ei2 + ∑
n≥i1>i2≥t

ei1 ⊗ ei2

is a diagonal approximation on C∗ (P)



Application to Closed Compact Surfaces

Let Xg be a closed compact surface of genus g . The celebrated
Classification of Closed Compact Surfaces states that Xg is
homeomorphic to a

I Sphere with g ≥ 0 handles when orientable

I Connected sum of g ≥ 1 real projective planes when
unorientable

I When g ≥ 1, Xg is the quotient of a

I 4g -gon when orientable

I 2g -gon when unorientable
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Polygonal Decomposition of a Torus

=⇒



Polygonal Decomposition of Real Projective Plane

=⇒



Polygonal Decomposition of a Klein Bottle

=⇒



Connected Sums
To obtain the connected sum X#Y of two surfaces, remove the
interior of a disk from X and from Y then glue the two surfaces
together along their boundaries

Connected sums of four real projective planes and three tori



The g-fold Torus as a Quotient of a 4g-gon

I An g -fold torus as a quotient of a 4g -gon has

I one 0-cell v
I 2g 1-cells (e1, e2) , . . . ,

(
e2g−1, e2g

)
I one 2-cell Tg
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A Diagonal on the g-fold Torus

I A diagonal on Tg is defined by

∆Tg (Tg ) = v ⊗ Tg + Tg ⊗ v +
g

∑
i=1
e2i−1 ⊗ e2i + e2i ⊗ e2i−1



A Diagonal on the g-fold Projective Plane

I A diagonal on RPg is defined by

∆RPg (RPg ) = v ⊗ RPg + RPg ⊗ v +
g

∑
i=1
ei ⊗ ei

I ∆Tg and ∆RPg are strikingly different and determine the
homeomorphism type of the surface
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Cohomology of a Closed Compact Surface

I Choose a polygonal decomposition of Xg

I ∂ = 0 on C∗ (Xg ) implies Hk (Xg ) = Ck (Xg )

I Cohomology is the linear dual of homology

Hk (Xg ) = Hom (Hk (Xg ) ,Z2)

I If x ∈ Hk (Xg ) , define x∗ (e) =
{
1, if e = x
0, otherwise

I Hk (Xg ) = {x∗ : x ∈ Hk (Xg )}
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Cohomology Algebra of a Closed Compact Surface
I Given x∗, y ∗ ∈ H∗ (X ) , define x∗ ^ y ∗ = m (x∗ ⊗ y ∗)∆X

I The terms of ∆X (x) determine the factors of x∗

I Example

∆Tg (Tg ) = v ⊗ Tg + Tg ⊗ v +
g

∑
i=1
e2i−1 ⊗ e2i + e2i ⊗ e2i−1

(e∗2i−1 ^ e∗2i ) (Tg ) = m (e∗2i−1 ⊗ e∗2i )∆Tg (Tg )
= m (e∗2i−1 ⊗ e∗2i ) (e2i−1 ⊗ e2i )
= m (1⊗ 1) = 1

I e∗2i−1 ^ e∗2i acting non-trivially on Tg implies

e∗2i−1 ^ e∗2i = T
∗
g
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Cohomology Algebra of a g-Fold Torus

I ∆Tg (Tg ) = v ⊗Tg +Tg ⊗ v +
g

∑
i=1
e2i−1 ⊗ e2i + e2i ⊗ e2i−1 ⇒

v ∗ ^ T ∗g = T
∗
g ^ v ∗ = e∗1 ^ e∗2 = e

∗
2 ^ e∗1 =

· · · = e∗2g−1 ^ e∗2g = e
∗
2g ^ e∗2g−1 = T

∗
g

I ∆Tg (e2i ) = v ⊗ e2i + e2i ⊗ v ⇒

v ∗ ^ e∗2i = e
∗
2i ^ v ∗ = e∗2i

I Factors in a non-vanishing cup product of 1-dim’l classes are
dual to 1-cells in the same component of the connected sum

I All 1-dim’l cup squares vanish

I H∗ (Tg ) is a graded commutative algebra with identity v ∗
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Cohomology Algebra of a g-Fold Projective Plane

I ∆RPg (RPg ) = v ⊗ RPg + RPg ⊗ v +
g

∑
i=1
ei ⊗ ei ⇒

v ∗ ^ RP∗g = RP
∗
g ^ v ∗ = e∗1 ^ e∗1 =

· · · = e∗g ^ e∗g = RP
∗
g

I e∗i ^ e∗j = 0 for all i 6= j
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Important Lessons

I The algebra structure of H∗ (Xg ) is a complete topological
invariant

I Cup squares of 1-dim’l classes vanish iff Xg is orientabile

I The number of 1-dim’l generators determines the genus g

I 2g distinct 1-dim’l generators if orientable and g otherwise

I A polygonal cell decomposition of Xg produces a diagonal ∆Xg

I Algebra structure of H∗ (Xg ) follows immediately from ∆Xg
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Merging Adjacent Cells

I Let (X , ∂) be a regular cell complex

I Assume a k-cell e is the intersection of exactly two (k + 1)-
cells a and b

I Remove int (a ∪ b) and attach a (k + 1)-cell c along ∂ (a ∪ b)

I Obtain the cell complex (X ′, ∂′) with fewer cells

X X ′
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The Chain Contraction

X ′ X

There exist chain maps

I f : C∗ (X )→ C∗ (X ′)

I g : C∗ (X ′)→ C∗ (X )
I φ : C∗ (X )→ C∗+1 (X ) defined on generators by

f (e) = ∂a+ e g (c) = a+ b
f (a) = 0 g (σ) = σ, σ 6= c
f (b) = c φ (e) = a
f (σ) = σ, σ 6= e, a, b φ (σ) = 0, σ 6= e
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I g is a chain homotopy equivalence

I (f , g , φ) is called a chain contraction of C∗ (X ) onto C∗ (X ′)

(Introduced by Henri Cartan 1904-2008)
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The Transfer Theorem

I Theorem A chain contraction (f , g , φ,C∗ (X ) ,C∗ (X ′))
preserves the algebraic topology of X

I Given a diagonal

∆X : C∗ (X )→ C∗ (X )⊗ C∗ (X )

the composition

∆X ′ = (f ⊗ f ) ◦ ∆X ◦ g

I Is a diagonal ∆X ′ : C∗ (X ′)→ C∗ (X ′)⊗ C∗ (X ′)

I If ∆X is homotopy cocommutative, so is ∆X ′

I If ∆X is homotopy coassociative, so is ∆X ′
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Example: Merging Adjacent 2-Simplices

X ′ X

f (e) = ∂a+ e g (c) = a+ b
f (a) = 0 g (σ) = σ, σ 6= c
f (b) = c φ (e) = a
f (σ) = σ, σ 6= e, a, b φ (σ) = 0, σ 6= e

I ∆X ′ (c) = [(f ⊗ f ) ◦ ∆X ◦ g ] (c) = (f ⊗ f ) (∆X (a+ b))

I = (f ⊗ f ) [1⊗ a+ 14⊗ 43+ a⊗ 3
+ 1⊗ b+ 12⊗ 23+ b⊗ 3]

I = 1⊗ c + 12⊗ 23+ 14⊗ 43+ c ⊗ 3
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The Cohomology Algebra of a Torus

∆T (γ) = v ⊗ γ+ α⊗ β+ β⊗ α+ γ⊗ v
α∗ ^ β∗ = β∗ ^ α∗ = γ∗



The Cohomology Algebra of T#T via Chain Contraction

f (e) = α1 + β1 + α1 + β1 = 0

∆̄′T#T (T#T ) = [(f ⊗ f ) ◦ ∆̄X ◦ g ] (T#T )
= [(f ⊗ f ) ◦ ∆̄X ] (T1 + T2)
= (f ⊗ f ) [α1 ⊗ β1 + e ⊗ (β1 + α1) + β1 ⊗ α1

+α2 ⊗ β2 + e ⊗ (β2 + α2) + β2 ⊗ α2]

= α1 ⊗ β1 + β1 ⊗ α1 + α2 ⊗ β2 + β2 ⊗ α2

α∗i ^ β∗i = β∗i ^ α∗i = T#T
∗



Generalization of Kravatz’s Diagonal on an n-gon

Theorem (G-L-U) Let X be a 3D polyhedral complex with
vertices numbered arbitrarily from 1 to n. Represent a k-gon P of
X as an ordered k-tuple of vertices 〈i1, . . . , ik 〉 , where
i1 = min {i1, . . . , ik} , i1 is adjacent to ik , and ij is adjacent to ij+1
for 1 < j < k. Then

∆P (P) = i1 ⊗ P + P ⊗ im(k )

+
m(k )−1

∑
j=2

(u2 + e2 + · · ·+ λjej )⊗ ej

+
k−1
∑

j=m(k )

[(1+ λj ) ej + ej+1 + · · ·+ ek−1 + uk ]⊗ ej ,

where im(k ) = max {i2, . . . , ik} , λj = 0 iff ij < ij+1,

{uj = 〈i1, ij 〉}2≤j≤k and {ej = 〈ij ij+1〉}2≤j≤k−1



Computational Considerations

X X ′

Number of 2-cells Cup product computed in
X 1,638 28.00 sec
X ′ 46 1.04 sec



Trabecular Bone

I Makes up the inner layer of the bone and has a spongy,
honeycomb-like structure.



Micro-CT Images of a Trabecular Bone

X X ′



Representative 1-cycles

Non-vanishing cup products: α∗2α∗4, α∗2α∗5, α∗2α∗9, α∗3α∗8, α∗4α∗5

I Computational methods such as these allow us to identify
diseased tissue



Thank you!


