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Diagonal Approximations
» The cellular chains of X, denoted C, (X), is the graded
Z,-vector space generated by the k-cells of X

» Example: If P is a polygon, C. (P) is generated by the
vertices, edges, and region of P

» The geometric boundary induces a differential operator
0:Ci(X) — Ci1 (X) such that 00od =0

> A diagonal approximation on X isa map Ax : X — X x X
that

> Is homotopic to the geometric diagonal A : x — (x, x)

» Commutes with the boundary operator

Axd = (@®Id+1d®d) Ax
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Goals of the Talk

1. Transform a simplicial or cubical complex X into a polyhedral
complex P

2. Given a diagonal on C, (X), induce a diagonal on C, (P)



Alexander-Whitney Diagonal on the Simplex
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Serre Diagonal on the Cube
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S-U Diagonal on the Associahedron
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A Diagonal on an n-gon P

2 e, Vv,
» Vertices labeled vi, va,..., v,
» Edges with endpoints v; and v;.1 labeled ¢; for i < n
» Edge with endpoints v, and v; labeled e,
> vj is the initial vertex; v, is the terminal vertex
» Edges are directed from v; to v,



A Diagonal on an n-gon P

» Theorem (D. Kravatz, 2008 thesis) There is a diagonal
approximation on C, (P) defined by

Ap(vi) = vi®v,

Ap(ej) =viRe+e v ifi<n
Ap(en) =vi ® ey + €, ® vy
Ap(P)=v@P+PQv,+ Y, € Qe

0<ih<ih<n
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A General Diagonal on an n-gon P
» Let v; be the terminal vertex

> Introduce a new edge ep from v; to v

» Let P; be the subpolygon with vertices vi, v, ..., v
» Let P, be the subpolygon with vertices vi, v¢, Viy1, ..., vy

» Edges are directed from v; to v



A General Diagonal on an n-gon P

Corollary Let P be an n-gon with initial vertex vi and terminal
vertex vy. Then

A/P('D):V1®P+P®Vt+ Z e, ¥e,+ Z e; ® e

0<in<ip<t n>ig>ih>t

is a diagonal approximation on C, (P)
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Application to Closed Compact Surfaces

Let X; be a closed compact surface of genus g. The celebrated
Classification of Closed Compact Surfaces states that X, is
homeomorphic to a

> Sphere with g > 0 handles when orientable

» Connected sum of g > 1 real projective planes when
unorientable

» When g > 1, X, is the quotient of a
> 4g-gon when orientable

» 2g-gon when unorientable



Polygonal Decomposition of a Torus




Polygonal Decomposition of Real Projective Plane




Polygonal Decomposition of a Klein Bottle




Connected Sums
To obtain the connected sum X#Y of two surfaces, remove the
interior of a disk from X and from Y then glue the two surfaces

together along their boundaries
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Connected sums of four real projective planes and three tori
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The g-fold Torus as a Quotient of a 4g-gon

» An g-fold torus as a quotient of a 4g-gon has

» one O-cell v

» 2g lcells (e1,e),..., (egg_l, egg)
> one 2-cell T,



A Diagonal on the g-fold Torus

€ vy e,

» A diagonal on T, is defined by

g
AT (Te)=vR T+ T, @v+ ) e 1Qeai+e®eai
i



A Diagonal on the g-fold Projective Plane

v e,
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» A diagonal on RP, is defined by

g
Arp,(RPg) =v@RP; + RP; Qv+ ) e ®e
i=1



A Diagonal on the g-fold Projective Plane

v e,

Sy
<

» A diagonal on RP, is defined by

g
Arp,(RPg) =v@RP; + RP; Qv+ ) e ®e
i=1

> ATg and ARpg are strikingly different and determine the
homeomorphism type of the surface
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v

Choose a polygonal decomposition of X,

v

0 =0on G (Xg) implies Hx (Xg) = Ci (Xg)

v

Cohomology is the linear dual of homology
H* (Xg) = Hom (Hy (Xg) Z3)

1, fe=x
0, otherwise

v

If x € He (Xg), define x* (e):{

> HE(Xg) = {x" : x € He (Xg))
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Cohomology Algebra of a Closed Compact Surface
> Given x*,y* € H* (X), define x* — y* = m(x* @ y*) Ax

» The terms of Ax (x) determine the factors of x*

» Example

g
A, (Tg) =ve Ty + Tg®V+Ze2ifl®e2i+e2i®ezi—l
i=1

(&1 — ;) (Tg) = m(es_1®ey) A, (Ty)
= m(ei1®e;) (e-1® &)
m(l®l)=1

> e,;,_; — € acting non-trivially on T, implies

* L
61— & =1,



Cohomology Algebra of a g-Fold Torus

g
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Cohomology Algebra of a g-Fold Torus
g
> AT (Tg) =vR T+ T, ®v+ ) @i 1®ai+eaiQeai1=
i=1
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"'_e2g—1v62g_e2gve2g—1_Tg

» At (e) =vReit+e v=
Vi e =g v =gy

1
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Cohomology Algebra of a g-Fold Torus

g
> AT (Tg) =vR T+ T, ®v+ ) @i 1®ai+eaiQeai1=
=

» At (e) =vReit+e v=

vi— e = ey — v = e

> Factors in a non-vanishing cup product of 1-dim’l classes are
dual to 1-cells in the same component of the connected sum
» All 1-dim’l cup squares vanish

» H*(Tg) is a graded commutative algebra with identity v*
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Cohomology Algebra of a g-Fold Projective Plane

g
> App,(RP;) =v@RP; +RP; Qv+ ) e Qe =
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Cohomology Algebra of a g-Fold Projective Plane

g

> App,(RP;) =v@RP; +RP; Qv+ ) e Qe =
i=1

Vi — RP} = RP; — v =¢f — e =

g

> e —e =0foralli#]j

» All non-vanishing cup products are squares



Cohomology Algebra of a g-Fold Projective Plane

v

4
Arp,(RP;) =v@RP; + RP;, @ v+ ) e Qe =
i=1

V'~ RPE=RP, — V' = ¢f — & =

> e —e =0foralli#]j

v

All non-vanishing cup products are squares

» H*(RPg) is a graded commutative algebra with identity v*
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Important Lessons

> The algebra structure of H* (Xg) is a complete topological
invariant

> Cup squares of 1-dim’l classes vanish iff X, is orientabile
» The number of 1-dim’l generators determines the genus g

» 2g distinct 1-dim’l generators if orientable and g otherwise

> A polygonal cell decomposition of X, produces a diagonal Ax,

> Algebra structure of H* (X;) follows immediately from Ax,
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Computing Cup Products on a Polyhedral Complex

STRATEGY:

> Given a simplicial complex X with its A-W diagonal

> lteratively apply a chain contraction to

» merge adjacent cells and

> induce a diagonal on the resulting polyhedral complex

» Compute the cohomology algebra of the polyhedral complex
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Merging Adjacent Cells

> Let (X, 0) be a regular cell complex

» Assume a k-cell e is the intersection of exactly two (k + 1)-
cells a and b

» Remove int (aU b) and attach a (k + 1)-cell ¢ along 0 (aU b)

» Obtain the cell complex (X', d") with fewer cells
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> g: G (X) = C(X)




The Chain Contraction

g
E— a
c X o
— | b
S

X' X

There exist chain maps
» £:C(X) = G (X))
» g C (X)) — C(X)
> ¢: C, (X) — Ciy1 (X) defined on generators by

f(e)=o0a+e g(c)=a+b
f(a)=0 glo)=o0, 0#c
f(b)=c p(e)=a
fo)=0, c#eab ¢(c)=0 c#e
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The Chain Contraction

—
— | b
f

X/ X
> fg = ldc (x) and ¢ is a chain homotopy from gf to ldc (x)

» g is a chain homotopy equivalence

» (f,g,¢) is called a chain contraction of C, (X) onto C, (X’)
(Introduced by Henri Cartan 1904-2008)
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The Transfer Theorem

» Theorem A chain contraction (f, g, ¢, C« (X), C. (X))
preserves the algebraic topology of X

» Given a diagonal
Ax : G (X) — G (X) ® G (X)
the composition
Ax) =(f®f)oAxog
> Is a diagonal Axs : G, (X') — G (X) @ G, (X)
» If Ax is homotopy cocommutative, so is Ay

» If Ax is homotopy coassociative, so is Ay



Example: Merging Adjacent 2-Simplices

3 4 3

- O ¢
A ¢ 7 3 ! U b 7'\

> / >

X' X
f(e)=o0da+e glc)=a+b
f(a)=0 glo)=0, 0c#c
f(b)=c ¢(e)=a
f(o)=0, c#eab ¢(c)=0 c#e

> Axi(c) = [(F& F)oAxog](c) = (F& F) (Ax (a+ b))



Example: Merging Adjacent 2-Simplices

.
v g

— a
A c A Y S r § ¢
<+— b
f

A\ 4

X' X
f(e)=o0da+e glc)=a+b
f(a)=0 glo)=0, 0c#c
f(b)=c p(e)=a
f(o)=0, c#eab ¢(c)=0 c#e

> Axi(c) = [(F& F)oAxog](c) = (F& F) (Ax (a+ b))

> =(fef)[lea+14®43+a®3
+10b+12023+b®3]
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Example: Merging Adjacent 2-Simplices

3 4
& . -
E— a
A ¢ A ! U 7'\ :>¢
<+— b
> / >
1 2 1 2
X' X
f(e)=o0da+e glc)=a+b
f(a)=0 glo)=0, 0c#c
f(b)=c ¢(e)=a
f(o)=0, c#eab ¢(c)=0 c#e

> Axi(c) = [(F& F)oAxog](c) = (F& F) (Ax (a+ b))

> =(fef)[lea+14®43+a®3
+10b+12023+b®3]

> =1®c+12®23+14®43+c®3



The Cohomology Algebra of a Torus

A S

pa v AP

>
a

v

AT () =vR@7+a@B+BRa+yQv

* L RY — B o — At
= = —a =7



The Cohomology Algebra of T#T via Chain Contraction

v

\&

A B

a, ¥

fle)=ar+p;+a1+p, =0

A’T#T(T#T) = [(f®f)oAxog] (T#T)
= [(f®f)oAx](Ti+ To)
= (FRf) a1 @B, +e® (B +a1)+ B, @
+ao @ B, +e® (By +a2) + B, @ as]
= a1 QB +B Va1 +ar®pP, + P, Das

W — Bl = B - = THT



Generalization of Kravatz's Diagonal on an n-gon

Theorem (G-L-U) Let X be a 3D polyhedral complex with
vertices numbered arbitrarily from 1 to n. Represent a k-gon P of
X as an ordered k-tuple of vertices (i, ..., ix), where
in=min{n,..., ik}, I is adjacent to ik, and i; is adjacent to ij4q
for 1 < j < k. Then

m(k)—1
+ ), (+te+--+Ajg) Qe
=2

k—1
+ Z [(1+)Lj)ej'+ej+1+"'+ek71+uk]®ejv
j=m(k)
where im(k) = maX{iz ----- ik}: )\j =0 iffij < ij+1'

{u; = (i, ,'j>}2§j§k and {¢ = </'j’.j+1>}2§j§k71



Computational Considerations

X/

Cup product computed in

28.00 sec

1.04 sec

Number of 2-cells

1,638

46

X
X/




Trabecular Bone

» Makes up the inner layer of the bone and has a spongy,
honeycomb-like structure.




Micro-CT Images of a Trabecular Bone
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Representative 1-cycles

Non-vanishing cup products: ajay, asas, ayag, X305, XyK:

» Computational methods such as these allow us to identify
diseased tissue



Thank you!



