Chapter 16

Waves and Sound
Waves:
1. A wave is a traveling disturbance.
2. A wave carries energy from place to place.
Two types

Transverse Wave

Vibration of particles is perpendicular to the direction of wave’s speed

Longitudinal Wave

Vibration of particles is parallel to the direction of wave’s speed
Water waves are partially transverse and partially longitudinal.
Periodic waves consist of cycles or patterns that are produced over and over again by the source.

In both cases, every segment of the slinky vibrates in simple harmonic motion, provided the end of the slinky is moved in simple harmonic motion.
16.2 Periodic Waves

The **amplitude**, \(A \) is the maximum excursion of a particle of the medium from the particles undisturbed position (equilibrium position).

The **period**, \(T \) is the time required for one complete cycle.

The **frequency**, \(f \) is related to the period and has units of Hz, or \(s^{-1} \). \(f = \frac{1}{T} \)

The **wavelength**, \(\lambda \) is the horizontal length of one cycle of the wave.

\[
\nu = \frac{\lambda}{T} = f\lambda
\]

SI Units? \(\text{m} \)
Example: The Wavelengths of Radio Waves

AM and FM radio waves are transverse waves consisting of electric and magnetic field disturbances traveling at a speed of 3.00×10^8 m/s. A station broadcasts AM radio waves whose frequency is 1230×10^3 Hz and an FM radio wave whose frequency is 91.9×10^6 Hz. Find the distance between adjacent crests in each wave.

$$\nu = \frac{\lambda}{T} = f \lambda$$

$$\lambda = \frac{\nu}{f}$$

AM Radio Waves

\[
\lambda = \frac{\nu}{f} = \frac{3.00 \times 10^8 \text{ m/s}}{1230 \times 10^3 \text{ Hz}} = 244 \text{ m}
\]

FM Radio Waves

\[
\lambda = \frac{3.00 \times 10^8 \text{ m/s}}{91.9 \times 10^6 \text{ Hz}} = 3.26 \text{ m}
\]
The speed at which the wave moves to the right depends on how quickly one particle of the string is accelerated upward in response to the net pulling force.

- Speed will be large if Force on each particle is large
- Speed will be small if mass of each particle is large

\[v = \sqrt{\frac{F}{m/L}} \]
Example: Waves Traveling on Guitar Strings
Transverse waves travel on each string of an electric guitar after the string is plucked. The length of each string between its two fixed ends is 0.628 m, and the mass is 0.208 g for the highest pitched E string and 3.32 g for the lowest pitched E string. Each string is under a tension of 226 N. Find the speeds of the waves on the two strings.

High E

\[v = \sqrt{\frac{F}{m/L}} = \sqrt{\frac{226 \text{ N}}{(0.208 \times 10^{-3} \text{ kg})/(0.628 \text{ m})}} \]

\[826 \text{ m/s} \]

Low E

\[v = \sqrt{\frac{F}{m/L}} = \sqrt{\frac{226 \text{ N}}{(3.32 \times 10^{-3} \text{ kg})/(0.628 \text{ m})}} \]

\[207 \text{ m/s} \]
Conceptual Example: Wave Speed Versus Particle Speed
Is the speed of a transverse wave on a string the same as the speed at which a particle on the string moves?

NO
Problem: 3 A woman is standing in the ocean, and she notices that after a wave crest passes by, five more crests pass in a time of 50.0 s. The distance between two successive crests is 32.0 m. What is the wave's (a) period, (b) frequency, (c) wavelength, (d) speed, and (e) amplitude?

a. After the initial crest passes, 5 additional crests pass in a time of 50.0 s. The period T of the wave is

$$T = \frac{50.0 \text{ s}}{5} = 10.0 \text{ s}$$

b. Since the frequency f and period T are related by $f = 1/T$, we have

$$f = \frac{1}{T} = \frac{1}{10.0 \text{ s}} = 0.100 \text{ Hz}$$

c. The horizontal distance between two successive crests is given as 32 m. This is also the wavelength λ of the wave, so

$$\lambda = 32 \text{ m}$$

d. According to Equation 16.1, the speed v of the wave is

$$v = f \lambda = (0.100 \text{ Hz})(32 \text{ m}) = 3.2 \text{ m/s}$$

e. There is no information given, either directly or indirectly, about the amplitude of the wave. Therefore, It is not possible to determine the amplitude.
Problem: 19

The drawing shows a graph of two waves traveling to the right at the same speed. (a) Using the data in the drawing, determine the wavelength of each wave. (b) The speed of the waves is 12 m/s; calculate the frequency of each one. (c) What is the maximum speed for a particle attached to each wave?

(a) From the drawing, we determine the wavelength of each wave to be

$$\lambda_A = 2.0 \text{ m} \quad \lambda_B = 4.0 \text{ m}$$

(b) The frequency of each wave is given by:

$$f_A = \frac{v}{\lambda_A} = \frac{12 \text{ m/s}}{2.0 \text{ m}} = 6.0 \text{ Hz}$$

$$f_B = \frac{v}{\lambda_B} = \frac{12 \text{ m/s}}{4.0 \text{ m}} = 3.0 \text{ Hz}$$

(c) The maximum speed for a particle moving in simple harmonic motion is given by: $$v_{\text{max}} = A \omega$$

$$v_{\text{max}} = A_A \omega_A = A_A (2\pi f_A) = (0.5 \text{ m})(2\pi \times 6.0 \text{ Hz}) = 19 \text{ m/s}$$

$$v_{\text{max}} = A_B \omega_B = A_B 2\pi f_B = (0.25 \text{ m})2\pi (3.0 \text{ Hz}) = 4.7 \text{ m/s}$$
Problem: 10

A jet skier is moving at 8.4 m/s in the direction in which the waves on a lake are moving. Each time he passes over a crest, he feels a bump. The bumping frequency is 1.20 Hz, and the crests are separated by 5.8 m. What is the wave speed?

\[v = \frac{\lambda}{T} = f\lambda \]

\[v_{JW} = v_{JS} - v_{WS} = f\lambda \]

\[v_{WS} = v_{JS} - f\lambda \]

\[v_{WS} = v_{JS} - f\lambda = 8.4 \text{ m/s} - (1.2 \text{ Hz})(5.8 \text{ m}) = 1.4 \text{ m/s} \]
16.5 The Nature of Sound Waves

LONGITUDINAL SOUND WAVES

The distance between adjacent condensations is equal to the wavelength of the sound wave.

Individual air molecules are not carried along with the wave.
The frequency is the number of cycles per second.

A sound with a single frequency is called a pure tone.

The brain interprets the frequency in terms of the subjective quality called **pitch**.
16.5 The Nature of Sound Waves

THE PRESSURE AMPLITUDE OF A SOUND WAVE

Loudness is an attribute of a sound that depends primarily on the pressure amplitude of the wave.
Sound travels through gases, liquids, and solids at considerably different speeds.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Speed (m/s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gases</td>
<td></td>
</tr>
<tr>
<td>Air (0 °C)</td>
<td>331</td>
</tr>
<tr>
<td>Air (20 °C)</td>
<td>343</td>
</tr>
<tr>
<td>Carbon dioxide (0 °C)</td>
<td>259</td>
</tr>
<tr>
<td>Oxygen (0 °C)</td>
<td>316</td>
</tr>
<tr>
<td>Helium (0 °C)</td>
<td>965</td>
</tr>
<tr>
<td>Liquids</td>
<td></td>
</tr>
<tr>
<td>Chloroform (20 °C)</td>
<td>1004</td>
</tr>
<tr>
<td>Ethyl alcohol (20 °C)</td>
<td>1162</td>
</tr>
<tr>
<td>Mercury (20 °C)</td>
<td>1450</td>
</tr>
<tr>
<td>Fresh water (20 °C)</td>
<td>1482</td>
</tr>
<tr>
<td>Seawater (20 °C)</td>
<td>1522</td>
</tr>
<tr>
<td>Solids</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>5010</td>
</tr>
<tr>
<td>Glass (Pyrex)</td>
<td>5640</td>
</tr>
<tr>
<td>Lead</td>
<td>1960</td>
</tr>
<tr>
<td>Steel</td>
<td>5960</td>
</tr>
</tbody>
</table>
Sound waves carry energy that can be used to do work.

The amount of energy transported per second is called the **power** of the wave.

The *sound intensity* is defined as the power that passes perpendicularly through a surface divided by the area of that surface.

\[I = \frac{P}{A} \]

Units of Intensity?

Watts/m\(^2\)
16.7 Sound Intensity

For a 1000 Hz tone, the smallest sound intensity that the human ear can detect is about $1 \times 10^{-12} \text{W/m}^2$. This intensity is called the **threshold of hearing**.

On the other extreme, continuous exposure to intensities greater than 1W/m2 can be painful.

If the source emits sound *uniformly in all directions*, the intensity depends on the distance from the source in a simple way.

\[
I = \frac{P}{4\pi r^2}
\]

where
- I is the intensity, in W/m2.
- P is the power of the sound source, in W.
- r is the distance from the source, in m.

[Image: Diagram showing a sound source at the center of a sphere, with vectors radiating outward. The equation $I = \frac{P}{4\pi r^2}$ is shown, indicating the relationship between intensity, power, and distance.]
Q: A source is emitting sound waves uniformly in all directions. A student measures Intensity I_1 at a distance r from the source and measures the intensity I_2 again at a distance double than the previous distance (that is $2r$). The Intensity ratio (I_2/I_1) he found was

a) 0.25
b) 1
c) 2
d) 4

$$I = \frac{P}{4\pi r^2}$$
The **decibel** (dB) is a measurement unit used when comparing two sound intensities.

Because of the way in which the human hearing mechanism responds to intensity, it is appropriate to use a logarithmic scale called the **intensity level**:

\[
\beta = (10 \text{ dB}) \log \left(\frac{I}{I_o} \right)
\]

\[I_o = 1.00 \times 10^{-12} \text{ W/m}^2\]

Note that \(\log(1)=0\), so when the intensity of the sound is equal to the threshold of hearing, the intensity level is zero.
Q: An intensity level of 0 dB means that the sound intensity is
a) 0 N/m²
b) Equal to hearing threshold frequency.
c) Equal to 1 N/m².
d) No way to tell

\[
\beta = (10 \text{ dB}) \log \left(\frac{I}{I_o} \right)
\]
\[
I_o = 1.00 \times 10^{-12} \text{ W/m}^2
\]

| Table 16.2 Typical Sound Intensities and Intensity Levels Relative to the Threshold of Hearing |
|---|-----------------|-----------------|
| Threshold of hearing | 1.0 \times 10^{-12} | 0 |
| Rustling leaves | 1.0 \times 10^{-11} | 10 |
| Whisper | 1.0 \times 10^{-10} | 20 |
| Normal conversation (1 meter) | 3.2 \times 10^{-6} | 65 |
| Inside car in city traffic | 1.0 \times 10^{-4} | 80 |
| Car without muffler | 1.0 \times 10^{-2} | 100 |
| Live rock concert | 1.0 | 120 |
| Threshold of pain | 10 | 130 |
Example 9 Comparing Sound Intensities

Audio system 1 produces a sound intensity level of 90.0 dB, and system 2 produces an intensity level of 93.0 dB. Determine the ratio of intensities.

\[\beta = (10 \text{ dB}) \log \left(\frac{I}{I_0} \right) \]
16.8 Decibels

\[\beta = (10 \text{ dB}) \log \left(\frac{I}{I_o} \right) \]

\[\beta_1 = (10 \text{ dB}) \log \left(\frac{I_1}{I_o} \right) \quad \beta_2 = (10 \text{ dB}) \log \left(\frac{I_2}{I_o} \right) \]

\[\beta_2 - \beta_1 = (10 \text{ dB}) \log \left(\frac{I_2}{I_o} \right) - (10 \text{ dB}) \log \left(\frac{I_1}{I_o} \right) = (10 \text{ dB}) \log \left(\frac{I_2/I_1}{I_o/I_o} \right) = (10 \text{ dB}) \log \left(\frac{I_2}{I_1} \right) \]

93-90 dB (given)

3.0 dB = (10 dB) \log \left(\frac{I_2}{I_1} \right)

\[0.30 = \log \left(\frac{I_2}{I_1} \right) \quad \frac{I_2}{I_1} = 10^{0.30} = 2.0 \]
For Recitation

Ch. 16

FOC 2, 3, 7, 11 & 17.