Chapter 12

Temperature and Heat

Temperatures are reported in degrees Celsius or degrees Fahrenheit.

Temperature changes, on the other hand, are reported in Celsius degrees or Fahrenheit degrees:

$$
1 \mathrm{C}^{\circ}=\frac{9}{5} \mathrm{~F}^{\circ}
$$

Example 1 Converting from a Fahrenheit to a Celsius Temperature

A healthy person has an oral temperature of $98.6^{\circ} \mathrm{F}$. What would this reading be on the Celsius scale?
degrees above ice point
$98.6^{\circ} \mathrm{F}-32^{\circ} \mathrm{F}=66.6 \mathrm{~F}^{\circ}$
, $\sqrt{5}$

$$
\left(66.6 \mathrm{~F}^{\circ}\right)\left(\frac{1 \mathrm{C}^{\circ}}{\frac{9}{5} \mathrm{~F}^{\circ}}\right)=37.0 \mathrm{C}^{\circ}
$$

$$
0 \mathrm{C}^{\circ}+37.0 \mathrm{C}^{\circ}=37.0^{\circ} \mathrm{C}
$$

ice point

Example 2 Converting from a Celsius to a Fahrenheit Temperature

A time and temperature sign on a bank indicates that the outdoor temperature is $-20.0^{\circ} \mathrm{C}$. Find the corresponding temperature on the Fahrenheit scale.

$$
\begin{aligned}
& \left(20.0 \mathrm{C}^{\circ}\right)\left(\frac{\frac{9}{5} \mathrm{~F}^{\circ}}{1 \mathrm{C}^{\circ}}\right)=36.0 \mathrm{~F}^{\circ} \\
& \text { ice point }
\end{aligned}
$$

Kelvin temperature
$T=T_{c}+273.15$

A constant-volume gas

 thermometer.
12.2 The Kelvin Temperature Scale

absolute zero point $=\mathbf{- 2 7 3 . 1 5}{ }^{\circ} \mathrm{C}$

Thermometers make use of the change in some physical property with temperature. A property that changes with temperature is called a thermometric property.

(a)

(b)

NORMAL SOLIDS

12.4 Linear Thermal Expansion

LINEAR THERMAL EXPANSION OF A SOLID

The length of an object changes when its temperature changes:

$$
\Delta L=\alpha L_{o} \Delta T
$$

coefficient of linear expansion

Common Unit for the Coefficient of Linear Expansion: $\frac{1}{\mathrm{C}^{\circ}}=\left(\mathrm{C}^{\circ}\right)^{-1}$

12.4 Linear Thermal Expansion

Table 12.1 Coefficients of Thermal Expansion for Solids and Liquids ${ }^{\text {a }}$

	Coefficient of Thermal Expansion $\left(\mathrm{C}^{\circ}\right)^{-1}$	
Substance	Linear (α)	Volume (β)
Solids		
Aluminum	23×10^{-6}	69×10^{-6}
Brass	19×10^{-6}	57×10^{-6}
Concrete	12×10^{-6}	36×10^{-6}
Copper	17×10^{-6}	51×10^{-6}
Glass (common)	8.5×10^{-6}	26×10^{-6}
Glass (Pyrex)	3.3×10^{-6}	9.9×10^{-6}
Gold	14×10^{-6}	42×10^{-6}
Iron or steel	12×10^{-6}	36×10^{-6}
Lead	29×10^{-6}	87×10^{-6}
Nickel	13×10^{-6}	39×10^{-6}
Quartz (fused)	0.50×10^{-6}	1.5×10^{-6}
Silver	19×10^{-6}	57×10^{-6}
Liquids ${ }^{\text {b }}$		
Benzene	-	1240×10^{-6}
Carbon tetrachloride	-	1240×10^{-6}
Ethyl alcohol	-	1120×10^{-6}
Gasoline	-	950×10^{-6}
Mercury	-	182×10^{-6}
Methyl alcohol	-	1200×10^{-6}
Water	-	207×10^{-6}

[^0]
Example 3 The Buckling of a Sidewalk

A concrete sidewalk is constructed betweer two buildings on a day when the temperatu is $25^{\circ} \mathrm{C}$. As the temperature rises to $38^{\circ} \mathrm{C}$, the slabs expand, but no space is provided for thermal expansion. Determine the distance y in part (b) of the drawing.

(b)

(a)

$$
\begin{aligned}
& \Delta L=\alpha L_{o} \Delta T \\
& =\left[12 \times 10^{-6}\left(\mathrm{C}^{\circ}\right)^{-1}\right](3.0 \mathrm{~m})\left(13 \mathrm{C}^{\circ}\right)=0.00047 \mathrm{~m}
\end{aligned}
$$

(b)

$$
y=\sqrt{(3.00047 \mathrm{~m})^{2}-(3.00000 \mathrm{~m})^{2}}=0.053 \mathrm{~m}
$$

Example 4 The Stress on a Steel Beam

The beam is mounted between two concrete supports when the temperature is $23^{\circ} \mathrm{C}$. What compressional stress must the concrete supports apply to each end of the beam, if they are to keep the beam from expanding when the temperature rises to $42^{\circ} \mathrm{C}$?

$$
\Delta L=\alpha L_{o} \Delta T
$$

Stress $=\frac{F}{A}=Y \frac{\Delta L}{L_{o}}=Y \alpha \Delta T$

$$
=\left(2.0 \times 10^{11} \mathrm{~N} / \mathrm{m}^{2}\right)\left[12 \times 10^{-6}\left(\mathrm{C}^{\circ}\right)^{-1}\right]\left(19 \mathrm{C}^{\circ}\right)=4.7 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}
$$

THE BIMETALLIC STRIP

THE EXPANSION OF HOLES

Conceptual Example 5 The Expansion of Holes

The figure shows eight square tiles that are arranged to form a square pattern with a hold in the center. If the tiled are heated, what happens to the size of the hole?

(a) Unheated

Expanded

(b) Heated

9th tile (heated)

(c)

A hole in a piece of solid material expands when heated and contracts when cooled, just as if it were filled with the material that surrounds it.

(a) Unheated

(b) Heated

9th tile
(heated)

(c)

Conceptual Example 7 Expanding Cylinders

Each cylinder is made from a different material. All three have the same temperature and they barely fit inside each other.

As the cylinders are heated to the same, but higher, temperature, cylinder C falls off, while cylinder A becomes tightly wedged to cylinder B.

Which cylinder is made from which material?

(b)

VOLUME THERMAL EXPANSION

The volume of an object changes when its temperature changes:

$$
\Delta V=\beta V_{o} \Delta T
$$

coefficient of volume expansion

Common Unit for the Coefficient of Volume Expansion: $\frac{1}{\mathrm{C}^{\circ}}=\left(\mathrm{C}^{\circ}\right)^{-1}$

Example 8 An Automobile Radiator

A small plastic container, called the coolant reservoir, catches the radiator fluid that overflows when an automobile engine becomes hot. The radiator is made of copper and the coolant has an expansion coefficient of $4.0 \times 10^{-4}\left(\mathrm{C}^{0}\right)^{-1}$. If the radiator is filled to its 15 -quart capacity when the engine is cold $\left(6^{\circ} \mathrm{C}\right)$, how much overflow will spill into the reservoir when the coolant reaches its operating temperature $\left(92^{\circ} \mathrm{C}\right)$?

$\Delta V_{\text {coolant }}=\left(4.10 \times 10^{-4}\left(\mathrm{C}^{\circ}\right)^{-1}\right)(15$ quarts $)\left(86 \mathrm{C}^{\circ}\right)=0.53$ quarts
$\Delta V_{\text {radiator }}=\left(51 \times 10^{-6}\left(\mathrm{C}^{\circ}\right)^{-1}\right)(15$ quarts $)\left(86 \mathrm{C}^{\circ}\right)=0.066$ quarts
$\Delta V_{\text {spill }}=0.53$ quarts -0.066 quarts $=0.46$ quarts

Coolant reservoir

Expansion of water.

Abstract

DEFINITION OF HEAT Heat is energy that flows from a highertemperature object to a lower-temperature object because of a difference in temperatures.

SI Unit of Heat: joule (J)
(a)

(b)
(a)

The heat that flows from hot to cold originates in the internal energy of the hot substance.

It is not correct to say that a substance contains heat.
(b)

SOLIDS AND LIQUIDS

HEAT SUPPLIED OR REMOVED IN CHANGING THE TEMPERATURE OF A SUBSTANCE

The heat that must be supplied or removed to change the temperature of a substance is

Common Unit for Specific Heat Capacity: J/(kg•Cº)

Table 12.2 Specific Heat Capacities ${ }^{\text {a }}$ of Some Solids and Liquids

	Specific Heat Capacity, c $\mathrm{~J} /\left(\mathrm{kg} \cdot \mathrm{C}^{\circ}\right)$
Substance	
Solids	9.00×10^{2}
Aluminum	387
Copper	840
Glass	3500
Human body	
$\quad\left(37^{\circ} \mathrm{C}\right.$, average $)$	2.00×10^{3}
Ice $\left(-15^{\circ} \mathrm{C}\right)$	452
Iron or steel	128
Lead	235
Silver	
Liquids	1740
Benzene	2450
Ethyl alcohol	2410
Glycerin	139
Mercury	4186
Water $\left(15^{\circ} \mathrm{C}\right)$	

${ }^{\text {a }}$ Except as noted, the values are for $25^{\circ} \mathrm{C}$ and 1 atm of pressure.

Example 9 A Hot Jogger

In a half-hour, a $65-\mathrm{kg}$ jogger can generate $8.0 \times 10^{5} \mathrm{~J}$ of heat. This heat is removed from the body by a variety of means, including the body's own temperature-regulating mechanisms. If the heat were not removed, how much would the body temperature increase?
$Q=m c \Delta T$

$$
\Delta T=\frac{Q}{m c}=\frac{8.0 \times 10^{5} \mathrm{~J}}{(65 \mathrm{~kg})\left[3500 \mathrm{~J} /\left(\mathrm{kg} \cdot \mathrm{C}^{\circ}\right)\right]}=3.5 \mathrm{C}^{\circ}
$$

GASES

The value of the specific heat of a gas depends on whether the pressure or volume is held constant.

This distinction is not important for solids.

OTHER UNITS

$1 \mathrm{kcal}=4186$ joules
$1 \mathrm{cal}=4.186$ joules

CALORIMETRY

If there is no heat loss to the surroundings, the heat lost by the hotter object equals the heat gained by the cooler ones.

Example 12 Measuring the Specific Heat Capacity

The calorimeter is made of 0.15 kg of aluminum and contains 0.20 kg of water. Initially, the water and cup have the same temperature of $18.0^{\circ} \mathrm{C}$. A 0.040 kg mass of unknown material is heated to a temperature of $97.0^{\circ} \mathrm{C}$ and then added to the water.

After thermal equilibrium is reached, the temperature of the water, the cup, and the material is $22.0^{\circ} \mathrm{C}$. Ignoring the small amount of heat gained by the thermometer, find the specific heat capacity of the
 unknown material.
12.7 Heat and Temperature Change: Specific Heat Capacity

$$
\begin{aligned}
& (m c \Delta T)_{\mathrm{Al}}+(m c \Delta T)_{\text {water }}=(m c \Delta T)_{\text {unknown }} \\
& c_{\text {unknown }}=\frac{(m c \Delta T)_{\mathrm{Al}}+(m c \Delta T)_{\text {water }}}{(m \Delta T)_{\text {unknown }}} \\
& =\frac{\left[9.00 \times 10^{2} \mathrm{~J} /\left(\mathrm{kg} \cdot \mathrm{C}^{\circ}\right)\right](0.15 \mathrm{~kg})\left(4.0 \mathrm{C}^{\circ}\right)+\left[4186 \mathrm{~J} /\left(\mathrm{kg} \cdot \mathrm{C}^{\circ}\right)\right](0.20 \mathrm{~kg})\left(4.0 \mathrm{C}^{\circ}\right)}{(0.040 \mathrm{~kg})\left(75.0 \mathrm{C}^{\circ}\right)} \\
& =1300 \mathrm{~J} /\left(\mathrm{kg} \cdot \mathrm{C}^{\circ}\right)
\end{aligned}
$$

THE PHASES OF MATTER

During a phase change, the temperature of the mixture does not change (provided the system is in thermal equilibrium).

Conceptual Example 13 Saving Energy

Suppose you are cooking spaghetti for dinner, and the instructions say "boil pasta in water for 10 minutes." To cook spaghetti in an open pot using the least amount of energy, should you turn up the burner to its fullest so the water vigorously boils, or should you turn down the burner so the water barely boils?

HEAT SUPPLIED OR REMOVED IN CHANGING THE PHASE OF A SUBSTANCE

The heat that must be supplied or removed to change the phase of a mass m of a substance is

SI Units of Latent Heat: J/kg

Table 12.3 Latent Heats ${ }^{\text {a }}$ of Fusion and Vaporization

	Melting Point $\left({ }^{\circ} \mathrm{C}\right)$	Latent Heat of Fusion, L_{f} $(\mathrm{J} / \mathrm{kg})$	Boiling Point $\left({ }^{\circ} \mathrm{C}\right)$	Latent Heat of Vaporization, L_{v} $(\mathrm{J} / \mathrm{kg})$
Substance	-77.8	33.2×10^{4}	-33.4	13.7×10^{5}
Ammonia	5.5	12.6×10^{4}	80.1	3.94×10^{5}
Benzene	1083	20.7×10^{4}	2566	47.3×10^{5}
Copper	-114.4	10.8×10^{4}	78.3	8.55×10^{5}
Ethyl alcohol	1063	6.28×10^{4}	2808	17.2×10^{5}
Gold	327.3	2.32×10^{4}	1750	8.59×10^{5}
Lead	-38.9	1.14×10^{4}	356.6	2.96×10^{5}
Mercury	-210.0	2.57×10^{4}	-195.8	2.00×10^{5}
Nitrogen	-218.8	1.39×10^{4}	-183.0	2.13×10^{5}
Oxygen	0.0	33.5×10^{4}	100.0	22.6×10^{5}
Water				

[^1]
Example 14 Ice-cold Lemonade

Ice at $0^{\circ} \mathrm{C}$ is placed in a Styrofoam cup containing 0.32 kg of lemonade at $27^{\circ} \mathrm{C}$. The specific heat capacity of lemonade is virtually the same as that of water. After the ice and lemonade reach an equilibrium temperature, some ice still remains. Find the mass of the melted ice. Assume that mass of the cup is so small that it absorbs a negligible amount of heat.

$$
\underbrace{\left(m L_{f}\right)_{\text {ice }}}_{\begin{array}{c}
\text { Heat gained } \\
\text { by melted ice }
\end{array}}=\underbrace{(c m \Delta T)_{\text {lemonade }}}_{\begin{array}{c}
\text { Heat lostby } \\
\text { lemonade }
\end{array}}
$$

$$
\underbrace{\left(m L_{f}\right)_{\text {ice }}}_{\begin{array}{c}
\text { Heat gained } \\
\text { by melted ice }
\end{array}}=\underbrace{(c m \Delta T)_{\text {lemonade }}}_{\begin{array}{c}
\text { Heat lostby } \\
\text { lemonade }
\end{array}}
$$

$$
\begin{aligned}
& m_{\text {ice melted }}=\frac{(c m \Delta T)_{\text {lemonade }}}{\mathrm{L}_{\mathrm{f}}} \\
& =\frac{\left[4186 \mathrm{~J} /\left(\mathrm{kg} \cdot \mathrm{C}^{\circ}\right)\right](0.32 \mathrm{~kg})\left(27^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}\right)}{3.35 \times 10^{5} \mathrm{~J} / \mathrm{kg}}=0.11 \mathrm{~kg}
\end{aligned}
$$

(a)

(b)

The pressure of vapor that coexists in equilibrium with the liquid is called the equilibrium vapor pressure of the liquid.

Only when the temperature and vapor pressure correspond to a point on the curved line do the liquid and vapor phases coexist in equilibrium.

Conceptual Example 16 How to Boil Water That is Cooling Down

Shortly after the flask is removed from the burner, the boiling stops. A cork is then placed in the neck of the flask to seal it. To restart the boiling, should you pour hot or cold water over the neck of the flask?

12.9 Equilibrium Between Phases of Matter

As is the case for liquid/vapor equilibrium, a solid can be in equilibrium with its liquid phase only at specific conditions of temperature and pressure.

 Fusion curve

(b)

Air is a mixture of gases.
The total pressure is the sum of the partial pressures of the component gases.

The partial pressure of water vapor depends on weather conditions. It can be as low as zero or as high as the vapor pressure of water at the given temperature.

To provide an indication of how much water vapor is in the air, weather forecasters usually give the relative humidity:
$($ Percent relative humidity $)=\frac{(\text { Partial pressureof water vapor })}{(\text { Equilibrium vapor pressureof water at existing temperature })} \times 100$

Example 17 Relative Humidities

One day, the partial pressure of water vapor is $2.0 \times 10^{3} \mathrm{~Pa}$. Using the vaporization curve, determine the relative humidity if the temperature is $32^{\circ} \mathrm{C}$.

$$
(\text { Percent relative humidity })=\frac{(\text { Partial pressureof water vapor })}{(\text { Equilibriu } m \text { vapor pressureof water at existing temperature })} \times 100
$$

$$
\text { Relative humidity }=\frac{2.0 \times 10^{3} \mathrm{~Pa}}{4.8 \times 10^{3} \mathrm{~Pa}} \times 100=42 \%
$$

The temperature at which the relative humidity is 100% is called the dew point.

[^0]: ${ }^{\text {a }}$ The values for α and β pertain to a temperature near $20^{\circ} \mathrm{C}$.
 ${ }^{\mathrm{b}}$ Since liquids do not have fixed shapes, the coefficient of linear expansion is not defined for them.

[^1]: ${ }^{a}$ The values pertain to 1 atm pressure.

