
Chapter 17 

The Principle of Linear 

Superposition and 

Interference Phenomena 



• THE PRINCIPLE OF LINEAR SUPERPOSITION 

When two or more waves are present simultaneously at the same place, the 

resultant disturbance is the sum of the disturbances from the individual waves. 

• Constructive Interference 

• Destructive Interference 

When two waves meet such a way that hills (condensations) meet hills and 

valleys (rarefactions) meet the valleys they said to be exactly in phase and 

they exhibit constructive interference. 

When two waves meet such a way that hills (condensations) meet 

valleys (rarefactions) and valleys meet the hills they said to be exactly 

out of phase and they exhibit destructive interference. 

If the wave patters do not shift relative to one another as time passes, 

the sources are said to be coherent. 

• Coherent Sources 

For constructive interference:  

Path difference = m λ 

 where m is 0, 1, 2, 3, … 

For destructive interference:  

Path difference = n λ/2 

 where n is 1, 3, 5, 7, … 



• Diffraction 

The bending of a wave around an obstacle or 

the edges of an opening is called diffraction. 
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17.4 Beats 

Two overlapping waves with slightly different frequencies gives rise  

to the phenomena of beats. 



17.4 Beats 

The beat frequency is the difference between the two sound frequencies. 
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17.5 Transverse Standing Waves 

Transverse standing wave patters 



17.5 Transverse Standing Waves 

In reflecting from the wall, a 

forward-traveling half-cycle 

becomes a backward-traveling 

half-cycle that is inverted. 

Unless the timing is right, the 

newly formed and reflected cycles 

tend to offset one another. 

Repeated reinforcement between 

newly created and reflected cycles 

causes a large amplitude standing 

wave to develop. 



17.5 Transverse Standing Waves 
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17.5 Transverse Standing Waves 
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17.5 Transverse Standing Waves 

Conceptual Example: The Frets on a Guitar 

Frets allow a the player to produce a complete sequence of musical notes on a single 

string.  Starting with the fret at the top of the neck, each successive fret shows where the 

player should press to get the next note in the sequence. 

Musicians call the sequence the chromatic scale, and every thirteenth note in it 

corresponds to one octave, or a doubling of the sound frequency.  The spacing between 

the frets is greatest at the top of the neck and decreases with each additional fret further 

on down.  Why does the spacing decrease going down the neck? 
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The spacing between the frets is greatest at the top of the 

neck and decreases with each additional frets further down 
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17.6 Longitudinal Standing Waves 

A longitudinal standing wave pattern on a slinky. 



17.6 Longitudinal Standing Waves 
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17.6 Longitudinal Standing Waves 

Example: Playing a Flute 

When all the holes are closed on one type of 

flute, the lowest note it can sound is middle 

C (261.6 Hz).  If the speed of sound is 343 m/s, 

and the flute is assumed to be a cylinder open 

at both ends, determine the distance L. 
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17.6 Longitudinal Standing Waves 
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The fundamental frequencies of two air columns are same. 

Column A is open at both ends, while column B is open at only 

one end. The length of column A is 0.70 m. What is the length of 

column B? 

Problem: 45 
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A string is fixed from both ends and is vibrating at 130 Hz, which is it’s 

3rd harmonic frequency. The linear density of the string is 5.6 x 10-3 kg/m, 

and it is under a tension of 3.3 N. Determine the length of the string. 

Problem: 53 
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Although L appears on both sides of Equation (2), no further algebra is required. 

This is because L appears in the ratio m/L on the right side. This ratio is the linear 

density of the string, which has a known value of 5.6×10−3 kg/m. Therefore, the 

length of the string is 
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Problem: 15 

The entrance to a large lecture room consists of two side-by-side 

doors, one hinged on the left and the other hinged on the right. Each 

door is 0.700 m wide. Sound of the frequency 607 Hz is coming 

through the entrance from within the room. The speed of sound is 

343 m/s. What is the diffraction angle of the sound after it passes 

through the doorway when  

(a) One door is open and 

(b)  Both doors are open. 

(a) 

When both doors are open, D = 2  0.700 m 

and the diffraction angle is 

(b) 

sin 𝜃 =
𝑣

𝑓𝐷
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𝜆

𝐷
 𝑣 = 𝜆𝑓 and 

sin 𝜃 =
343 𝑚/𝑠

(607 𝐻𝑧)(0.70𝑚)
 𝜃 = 53.8° 

sin 𝜃 =
343 𝑚/𝑠

(607 𝐻𝑧)(2 × 0.70𝑚)
 𝜃 = 23.8° 



For Recitation 

Ch. 17 

FOC: 2, 3, 5, 14, 16. 

Problems: 7, 14, 19, 41 & 43. 


