Arc Length

Suppose a curve is given by continuous functions

$$x = f(t), \quad y = g(t), \quad a \le \le b.$$

Partition the interval $[a, b]$ :

$$P:\ a = t_0 < t_1 < t_2 < \cdots < t_n = b.$$

(Note that different partitions may use different numbers of points, as well as different points.)

Consider a subinterval $[t_k, t_{k +
   1}]$ . The corresponding points on the curve are

$$(x_k, y_k) = (f(t_k), g(t_k)) \quad\hbox{and}\quad (x_{k + 1}, y_{k + 1}) = (f(t_{k + 1}), g(t_{k + 1})).$$

The length of the segment from $(x_k,
   y_k)$ to $(x_{k + 1}, y_{k + 1})$ is

$$\Delta s_k = \sqrt{(x_k - x_{k + 1})^2 + (y_k - y_{k + 1})^2}.$$

$$\hbox{\epsfysize=1.5in \epsffile{arc-length-1.eps}}$$

It approximates the length of the curve from $(x_k, y_k)$ to $(x_{k + 1}, y_{k
   + 1})$ .

For the partition P, the total length of the segments is

$$L(P) = \sum_{k = 0}^{n - 1} \Delta s_k.$$

Definition. A curve is rectifiable if there is a number M such that for every partition of the interval $[a, b]$ ,

$$L(P) < M.$$

If a curve is rectifiable, we can define the length of the curve as the least upper bound of $L(P)$ taken over all the partitions of the interval.

While you can imagine approximating the length of a curve by taking partitions with larger and larger numbers of points, this definition doesn't give a way of computing the exact length.

If the curve is "well-behaved", we can compute the exact length as follows. Suppose the functions $f(t)$ and $g(t)$ are differentiable and have continuous derivatives. Apply the Mean Value Theorem to f and to g on a typical subinterval $[t_k, t_{k + 1}]$ . Then there are numbers $p_k$ and $q_k$ such that

$$x_{k + 1} - x_k = f'(p_k) (t_{k + 1} - t_k) \quad\hbox{and}\quad y_{k + 1} - y_k = g'(q_k) (t_{k + 1} - t_k).$$

Plugging these into the equation for $\Delta s_k$ above, I get

$$\eqalign{ \Delta s_k & = \sqrt{(x_k - x_{k + 1})^2 + (y_k - y_{k + 1})^2} \cr & = \sqrt{f'(p_k)^2 (t_{k + 1} - t_k)^2 + g'(q_k)^2 (t_{k + 1} - t_k)^2} \cr & = \sqrt{f'(p_k)^2 + g'(q_k)^2} (t_{k + 1} - t_k) \cr & = \sqrt{f'(p_k)^2 + g'(q_k)^2} \Delta t_k \cr}$$

I obtain the sum

$$L(P) = \sum_{k = 0}^{n - 1} \Delta s_k = \sum_{k = 0}^{n - 1} \sqrt{f'(p_k)^2 + g'(q_k)^2} \Delta t_k.$$

I want to take the limit as the number of subintervals in the partition becomes infinite (or as the length of the subintervals goes to 0). There is a technical point here, and that is that I have two varying quantities $p_k$ and $q_k$ , so this is not an ordinary Riemann sum. In fact, it's possible to show (using a result called Bliss's Theorem) that the Riemann sum produces the expected definite integral:

$$L = \int_a^b \sqrt{f'(t)^2 + g'(t)^2}\,dt = \lim_{\Delta t \to 0} \sum_{k = 0}^{n - 1} \sqrt{f'(p_k)^2 + g'(q_k)^2} \Delta t_k.$$

This gives the length of the curve. You can also write this in the form

$$L = \int_a^b \sqrt{\left(\der x t\right)^2 + \left(\der y t\right)^2}\,dt.$$

If the curve is given in the form $y
   = g(x)$ , we can think of it as parametrized by x (so t becomes x). Since $\der x x = 1$ , the formula is

$$L = \int_a^b \sqrt{1 + \left(\der y x\right)^2}\,dx.$$

Likewise, if the curve is given in the form $x = f(y)$ , the formula is

$$L = \int_a^b \sqrt{1 + \left(\der x y\right)^2}\,dy.$$

Example. Find the length of $y = \dfrac{1}{2} x^2$ for $0 \le
   x \le 1$ .

$$\hbox{\epsfysize=1.5in \epsffile{arc-length-2.eps}}$$

$$\der y x = x, \quad\hbox{so}\quad \left(\der y x\right)^2 + 1 = x^2 + 1.$$

The length is

$$L = \int_0^1 \sqrt{x^2 + 1}\,dx = \left[\dfrac{1}{2}x\sqrt{x^2 + 1} + \dfrac{1}{2} \ln |x + \sqrt{x^2 + 1}|\right]_0^1 = \dfrac{\sqrt{2}}{2} + \dfrac{1}{2} \ln (1 + \sqrt{2}) = 1.14779 \ldots .$$

Here's the work for the integral:

$$\int \sqrt{x^2 + 1}\,dx = \int \sqrt{(\tan \theta)^2 + 1}(\sec \theta)^2\,d\theta = \int (\sec \theta)^3\,d\theta =$$

$$\hfil\raise0.5 in\hbox{$\left[x = \tan \theta, \quad dx = (\sec \theta)^2\,d\theta\right]$} \hskip0.5 in \hbox{\epsfysize=1in \epsffile{arc-length-3.eps}}\hfil$$

$$\dfrac{1}{2}\sec \theta \tan \theta + \dfrac{1}{2}\ln |\sec \theta + \tan \theta| + C = \dfrac{1}{2}x\sqrt{x^2 + 1} + \dfrac{1}{2}\ln |x + \sqrt{x^2 + 1}| + C.\quad\halmos$$


Example. Find the length of the curve

$$x = e^t \cos 2 t, \quad y = e^t \sin 2 t , \quad 0 \le t \le \dfrac{\pi}{4}.$$

$$\hbox{\epsfysize=1.5in \epsffile{arc-length-4.eps}}$$

$$\der x t = -2 e^t \sin 2 t + e^t \cos 2 t, \quad \der y t = 2 e^t \cos 2 t + e^t \sin 2 t,$$

$$\left(\der x t\right)^2 + \left(\der y t\right)^2 = (-2 e^t \sin 2 t + e^t \cos 2 t)^2 + (2 e^t \cos 2 t + e^t \sin 2 t)^2 =$$

$$4 e^{2 t}(\sin 2 t)^2 - 4 e^{2 t}\sin 2 t \cos 2 t + e^{2 t}(\cos 2 t)^2 + 4 e^{2 t}(\cos 2 t)^2 + 4 e^{2 t}\sin 2 t \cos 2 t + e^{2 t}(\sin 2 t)^2 =$$

$$4 e^{2 t}\left[(\sin 2 t)^2 + (\cos 2 t)^2\right] + e^{2 t}\left[(\sin 2 t)^2 + (\cos 2 t)^2\right] = 4 e^{2 t}\cdot 1 + e^{2 t}\cdot 1 = 5 e^{2 t}.$$

Hence,

$$\sqrt{\left(\der x t\right)^2 + \left(\der y t\right)^2} = \sqrt{5 e^{2 t}} = \sqrt{5}e^t.$$

The length is

$$L = \int_0^{\pi/4} \sqrt{5}\,e^t\,dt = \sqrt{5} \left[e^t\right]_0^{\pi/4} = \sqrt{5} (e^{\pi/4} - 1) = 2.66825 \ldots .\quad\halmos$$


Example. Find the length of $y = \dfrac{x^4}{16} + \dfrac{1}{2 x^2}$ for $1 \le x \le 2$ .

$$\hbox{\epsfysize=1.5in \epsffile{arc-length-5.eps}}$$

$$\der y x = \dfrac{x^3}{4} - \dfrac{1}{x^3}, \quad\hbox{so}\quad \left(\der y x\right)^2 = \left(\dfrac{x^3}{4} - \dfrac{1}{x^3}\right)^2 = \dfrac{x^6}{16} - \dfrac{1}{2} + \dfrac{1}{x^6}.$$

The next step is the algebraic trick in this problem:

$$\left(\der y x\right)^2 + 1 = \left(\dfrac{x^6}{16} - \dfrac{1}{2} + \dfrac{1}{x^6}\right) + 1 = \dfrac{x^6}{16} + \dfrac{1}{2} + \dfrac{1}{x^6} = \left(\dfrac{x^3}{4} + \dfrac{1}{x^3}\right)^2.$$

The idea is that I saw when I found $\left(\der y x\right)^2$ that

$$\dfrac{x^6}{16} - \dfrac{1}{2} + \dfrac{1}{x^6} = \left(\dfrac{x^3}{4} - \dfrac{1}{x^3}\right)^2.$$

Therefore,

$$\dfrac{x^6}{16} + \dfrac{1}{2} + \dfrac{1}{x^6} = \left(\dfrac{x^3}{4} + \dfrac{1}{x^3}\right)^2.$$

The only difference is in the sign of the $\dfrac{1}{2}$ . Since the first expression is the square of a binomial with a "-", the second expression must be the square of the same binomial with a "+".

Thus,

$$\sqrt{\left(\der y x\right)^2 + 1} = \sqrt{\left(\dfrac{x^3}{4} + \dfrac{1}{x^3}\right)^2} = \dfrac{x^3}{4} + \dfrac{1}{x^3}.$$

The length is

$$L = \int_1^2 \left(\dfrac{x^3}{4} + \dfrac{1}{x^3}\right)\,dx = \left[\dfrac{x^4}{16} - \dfrac{1}{2 x^2}\right]_1^2 = \dfrac{7}{16} = 0.4375.\quad\halmos$$


Contact information

Bruce Ikenaga's Home Page

Copyright 2019 by Bruce Ikenaga