To prove a statement P by contradiction, you
assume the negation of what you want
to prove and try to derive a contradiction (usually a
statement of the form
). Since a
contradiction is always false, your assumption
must be false, so the original statement P must be
true.
Example. Premises:
Prove: A.
Since I want to prove A by contradiction, I begin by assuming the
negation . I'm trying to construct a
contradiction of the form
.
I arrived at the contradiction at line
11. Therefore, I conclude that my premise
was false, so A must be true (line 12).
In the next example, I'll look at Euclid's proof that there are infinitely many prime numbers; it occurs in Book IX of Euclid's Elements, which was composed around 300 B.C. and is arguably the most famous math textbook of all time.
Example. Prove that there are infinitely many
prime numbers. (An integer is
prime if its only positive divisors are 1 and n.)
Suppose that there are not infinitely many prime numbers. That means there are finitely many prime numbers --- suppose they are
Look at the number
(It's the product of all of the p's, plus one. Notice that the product of the p's wouldn't make sense if there were infinitely many p's.)
x leaves a remainder of 1 when it's divided by , since
divides evenly into
the
term. Likewise, x leaves a
remainder of 1 when it's divided by
, ...,
. Therefore, x is not
divisible by any of the p's --- that is, x is not divisible by any
prime number.
However, every integer greater than 1 is divisible by some prime number. A precise proof of this fact requires induction, which I'll discuss later. But you can see that it's reasonable. If a number z is prime, it's divisible by a prime, namely z. Otherwise, you can factor z into a product of two smaller numbers. If either factor is prime, then the prime factor is a prime which divides z. If neither factor of z is prime, you can factor them, and so on. Eventually, the process must stop, because the factors always get smaller.
Returning to my proof, I've found that x isn't divisible by any prime
number, which I've just noted is impossible. This contradiction shows
that there must be infinitely many prime numbers.
Example. Prove that the following system of equations has no real solutions:
Suppose there is a real solution , so that
Add the equations, and complete the square in x:
Now squares are nonnegative, so
Also, .
In addition,
Therefore,
So . This
contradiction shows that the original system has no solutions.
The next example is another "classical" result. The discovery that there are quantities which can't be expressed in terms of whole numbers or their ratios was known to the ancient Greeks; Boyer and Mertzbach [1] place the discovery prior to 410 B.C.
Example. Prove that is irrational. (A
rational number is a real number which can be written in the
form
, where m and n are integers. A
real number which is not rational is
irrational.)
Suppose on the contrary that is rational. Then
I can write
, where
. (Remember that
stands for the set of integers.) By
dividing out any common factors, I can assume that
is in lowest terms (that is, m and n have
no common factors besides 1 and -1).
Clear the denominator, then square both sides:
Since 2 divides the left side, it must divide the right side. But if
2 divides , it must in fact divide m. So
suppose
, where
. Substitute in the previous equation and
cancel a factor of 2:
Now 2 divides the right side, so it must divide the left side. But if
2 divides , it must divide n.
However, I already showed that 2 divides m, so 2 divides both m and
n. This contradicts my assumption that the fraction was in lowest terms.
Therefore, must be irrational.
The preceding examples give situations in which proof by contradiction might be useful:
A proof by contradiction might be useful if the statement of a theorem is a negation --- for example, the theorem says that a certain thing doesn't exist, that an object doesn't have a certain property, or that something can't happen. In these cases, when you assume the contrary, you negate the original negative statement and get a positive statement, which gives you something to work with.
Having said this, I should note that it is considered bad style to write a proof by contradiction when you can give a direct proof. In those situations, the proof by contradiction often looks awkward. Moreover, the direct proof will often tell you more. For example, a direct proof that something exists will often work by constructing the object. This is better than simply knowing that the object exists on logical grounds.
In some cases, proof by contradiction is used as part of a larger proof --- for instance, to eliminate certain possibilities.
Example. Prove that the function cannot have more than one
root.
In this proof, I'll use Rolle's Theorem, which
says: If f is continuous on the interval , differentiable on the interval
, and
, then
for some
.
Suppose on the contrary that has more than one root. Then f has at least two
roots. Suppose that a and b are (different) roots of f with
.
Since f is a polynomial, it is continuous and differentiable for all x. Since a and b are roots, I have
By Rolle's Theorem, for some c such
that
.
However,
Since is a sum of even powers and a positive
number (17), it follows that
for all x. This
contradicts
.
Therefore, f does not have more than one root.
Note: You could use the Intermediate Value Theorem to show that has at least one root. Combined with the result I
just proved, this shows that
has
exactly one root.
Example. On a certain island, each inhabitant always lies or always tells the truth. Calvin and Phoebe live on the island.
Calvin says: "Exactly one of us is lying."
Phoebe says: "Calvin is telling the truth."
Determine who is telling the truth and who is lying.
Suppose Calvin is a truth teller. Then "Exactly one of us is lying" is true, and since Calvin is a truth teller, Phoebe is a liar. Therefore, "Calvin is telling the truth" is a lie, so Calvin must be lying. This is a contradiction, because I assumed he was telling the truth.
Hence, I've proved by contradiction that Calvin must be a liar. Hence, "Exactly one of us is lying" is false. This gives two possibilities: Either both are telling the truth, or both are lying.
Suppose both are telling the truth. This contradicts the fact that Calvin is lying.
The only other possibility is that both are lying. Then Calvin's statement "Exactly one of us is lying" should be false (and it is), and Phoebe's statement "Calvin is telling the truth" should be false (and it is). Thus, this is the only possibility, and it's consistent with the given statements.
Therefore, Calvin and Phoebe are both liars.
[1] Carl Boyer, A History of Mathematics (2 edition) (revised by Uta Merzbach), New
York: John Wiley \& Sons, Inc., 1991.
Copyright 2019 by Bruce Ikenaga