Surface Area

I'll consider the problem of finding the area of part of a surface in $\real^3$ :

$$x = f(u, v), \quad y = g(u, v), \quad z = h(u, v).$$

Here is a heuristic motivation for the formula.

In our discussion of the tangent plane to a surface, we found a normal vector by taking two vectors in the tangent plane and taking their cross product. We considered a small piece of the surface near the point of tangency. A small piece will be nearly flat, and will look like the parallelogram depicted below (exaggerated so you can see it):

$$\hbox{\epsfysize=1.5in \epsffile{surface-area-1.eps}}$$

The sides of the parallelogram are determined by the tangent vectors $\bvec{T}_u$ and $\bvec{T}_v$ , scaled up the the parameter increments $du$ and $dv$ . The area of the parallelogram should be the length of the cross product:

$$\|\bvec{T}_v\,du \times \bvec{T}_v\,dv\| = \|\bvec{T}_v \times \bvec{T}_v\|\,du\,dv.$$

To get the area of the part of the surface corresponding to the region R in the u-v plane, integrate to add up the areas of the parallelograms:

$$\dint_R \|\vec{T}_u \times \vec{T}_v\|\,du\,dv.$$

As a special case, consider a surface $z = f(x, y)$ given as the graph of a function. A normal vector is given by

$$\vec{N} = \left(\pder z x, \pder z y, -1\right).$$

Hence,

$$\|\vec{N}\| = \sqrt{\left(\pder z x\right)^2 + \left(\pder z y\right)^2 + 1}.$$

In this case, the area of the surface is

$$\dint_R \sqrt{\left(\pder z x\right)^2 + \left(\pder z y\right)^2 + 1}\,dx\,dy.$$


Example. Find the area of the part of the surface $z = 2 x y - 1$ which lies inside the cylinder $x^2 + y^2 = 9$ .

$$\pder z x = 2 y, \quad \pder z y = 2 x, \quad\hbox{so}\quad \|\vec{N}\| = \sqrt{4 y^2 + 4 x^2 + 1}.$$

The region of integration is the interior of the circle $x^2 + y^2 = 9$ :

$$\left\{\matrix{ -3 \le x \le 3 \cr -\sqrt{9 - x^2} \le y \le \sqrt{9 - x^2} \cr}\right\}$$

I'll convert to polar. The region becomes

$$\left\{\matrix{ 0 \le \theta \le 2 \pi \cr 0 \le r \le 3 \cr}\right\}$$

The integrand is

$$\|\vec{N}\| = \sqrt{4 r^2 + 1}.$$

The area is

$$\int_0^3 \int_0^{2 \pi} \sqrt{4 r^2 + 1}r\,d\theta\,dr = 2 \pi \int_0^3 \sqrt{4 r^2 + 1} r\,dr = 2 \pi\left[\dfrac{1}{12} (4 r^2 + 1)^{3/2}\right]_0^3 = \dfrac{\pi}{6} (37^{3/2} - 1) = 117.31870 \ldots.\quad\halmos$$


Example. Find the area of the surface

$$x = v \cos u, \quad y = v \sin u, \quad z = v, \quad 0 \le u \le 2 \pi, \quad 0 \le v \le 2.$$

$$\vec{T}_u = (-v \sin u, v \cos u, 0), \quad \vec{T}_v = (\cos u, \sin u, 1),$$

$$\vec{T}_u \times \vec{T}_v = \left|\matrix{\ihat & \jhat & \khat \cr -v \sin u & v \cos u & 0 \cr \cos u & \sin u & 1 \cr}\right| = (v \cos u, v \sin u, -v),$$

$$\|\vec{T}_u \times \vec{T}_v\| = \sqrt{v^2 (\cos u)^2 + v^2 (\sin u)^2 + v^2} = \sqrt{2} v.$$

The area of the surface is

$$\int_0^2 \int_0^{2 \pi} \sqrt{2} v\,du\,dv = 2 \pi \sqrt{2} \int_0^2 v\,dv = 2 \pi \sqrt{2} \left[\dfrac{1}{2} v^2\right]_0^2 = 4 \pi \sqrt{2} = 17.77153 \ldots.\quad\halmos$$


Example. (a) Find the area of the sphere $x^2 + y^2 + z^2 = a^2$ by representing the top hemisphere as the graph of a function.

(b) Find the area of the sphere $x^2 + y^2 + z^2 = a^2$ using the parametrization

$$x = a \cos u \cos v, \quad y = a \cos u \sin v, \quad z = a \sin u, \quad -\dfrac{\pi}{2} \le u \le \dfrac{\pi}{2}, \quad 0 \le v \le 2 \pi.$$

(a) The top hemisphere is

$$z = \sqrt{a^2 - x^2 - y^2}.$$

Thus,

$$\vec{N} = \left(-\dfrac{x}{\sqrt{a^2 - x^2 - y^2}}, -\dfrac{y}{\sqrt{a^2 - x^2 - y^2}}, -1\right),$$

$$\|\vec{N}\| = \left(\dfrac{x^2}{a^2 - x^2 - y^2} + \dfrac{y^2}{a^2 - x^2 - y^2} + 1\right)^{1/2} = \left(\dfrac{a^2}{a^2 - x^2 - y^2}\right)^{1/2} = \dfrac{a}{\sqrt{a^2 - x^2 - y^2}}.$$

The region of integration is the interior of the circle $x^2 + y^2 = a^2$ :

$$\matrix{-a \le x \le a \cr -\sqrt{a^2 - x^2} \le y \le \sqrt{a^2 - x^2} \cr}$$

I'll convert to polar. The region is

$$\matrix{0 \le \theta \le 2 \pi \cr 0 \le r \le a \cr}$$

Likewise,

$$\|\vec{N}\| = \dfrac{a}{\sqrt{a^2 - r^2}}.$$

I need to double the area for the top hemisphere to get the area of the whole sphere:

$$2\int_0^a \int_0^{2 \pi} \dfrac{a}{\sqrt{a^2 - r^2}}r\,d\theta\,dr = 4 \pi \int_0^a \dfrac{a r}{\sqrt{a^2 - r^2}}\,dr = 4 \pi a \left[-\sqrt{a^2 - r^2}\right]_0^a = 4 \pi a^2.\quad\halmos$$

(b)

$$\vec{T}_u = (-a \sin u \cos v, -a \sin u \sin v, a \cos u), \quad \vec{T}_v = (-a \cos u \sin v, a \cos u \cos v, 0),$$

$$\vec{T}_u \times \vec{T}_v = \left|\matrix{\ihat & \jhat & \khat \cr -a \sin u \cos v & -a \sin u \sin v & a \cos u \cr -a \cos u \sin v & a \cos u \cos v & 0 \cr}\right| = (-a^2 (\cos u)^2 \cos v, -a^2 (\cos u)^2 \sin v, -a^2 \sin u \cos u),$$

$$\|\vec{T}_u \times \vec{T}_v\| = \sqrt{a^4 (\cos u)^4 (\cos v)^2 + a^4 (\cos u)^4 (\sin v)^2 + a^4 (\sin u)^2 (\cos u)^2} = a^2 \cos u.$$

The area is

$$\int_{-\pi/2}^{\pi/2} \int_0^{2 \pi} a^2 \cos u\,dv\,du = 2 \pi a^2 \int_{-\pi/2}^{\pi/2} \cos u\,du = 2 \pi a^2 \left[\sin u\right]_{-\pi/2}^{\pi/2} = 4 \pi a^2. \quad\halmos$$


Contact information

Bruce Ikenaga's Home Page

Copyright 2018 by Bruce Ikenaga